K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

a: \(\left(a-b-2\right)^2-\left(2a-2b\right)\left(a-b-2\right)+a^2-2ab+b^2\)

\(=\left(a-b\right)^2-4\left(a-b\right)+4+\left(a-b\right)^2-2\left(a-b\right)\left(a-b-2\right)\)

\(=2\left(a-b\right)^2-4\left(a-b\right)+4-2\left[\left(a-b\right)^2-2\left(a-b\right)\right]\)

\(=2\left(a-b\right)^2-4\left(a-b\right)+4-2\left(a-b\right)^2+4\left(a-b\right)\)

\(=4\)

b: \(\left(2+1\right)\left(2^2+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\cdot...\cdot\left(2^{256}+1\right)-1\)

\(=\left(2^{64}-1\right)\left(2^{64}+1\right)\left(2^{128}+1\right)\left(2^{256}+1\right)-1\)

\(=\left(2^{128}-1\right)\left(2^{128}+1\right)\left(2^{256}+1\right)-1\)

\(=\left(2^{256}-1\right)\left(2^{256}+1\right)+1\)

\(=2^{512}-1+1=2^{512}\)

c: \(24\left(5^2+1\right)\left(5^4+1\right)\cdot...\cdot\left(5^{32}+1\right)-5^{64}\)

\(=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)-5^{64}\)

\(=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)-5^{64}\)

\(=\left(5^{16}-1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)-5^{64}\)

\(=\left(5^{32}-1\right)\left(5^{32}+1\right)-5^{64}\)

=-1

13 tháng 7 2017

a) Sai đề nên sửa luôn\(\left(2x-5\right)\left(4x^2+10x+25\right)-2x\left(2x+1\right)^2+8x^2+23x+125\)

=\(8x^3-125-2x\left(4x^2+4x+1\right)+8x^2+23x+125\)

= \(8x^3-125-8x^3-8x^2-2x+8x^2+23x+125\)

= \(21x\)

b) \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)

= \(\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)

= \(\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)

= \(\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)

= \(\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)-2^{32}\)

= \(\left(2^{16}-1\right)\left(2^{16}+1\right)-2^{32}\)

= \(2^{32}-1-2^{32}=-1\)

1 tháng 7 2018

1/

a,\(A=x-x^2=-x^2+x=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì \(-\left(x-\frac{1}{2}\right)^2\le0\Rightarrow A=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu "=" xảy ra <=>x=1/2

Vậy Amax=1/4 khi x=1/2

b, \(B=2x-2x^2-5=-2x^2+2x-5\)

\(\Rightarrow2B=-4x^2+4x-10=-\left(4x^2-4x+1\right)-9=-\left(2x-1\right)^2-9\)

Vì \(-\left(2x-1\right)^2\le0\Rightarrow2B=-\left(2x-1\right)^2-9\le-9\Rightarrow B\le\frac{-9}{2}\)

Dấu "=" xảy ra <=>x=1/2

Vậy Bmax=-9/2 khi x=1/2

2/

\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)

7 tháng 10 2015

   3(22+1)(24+1)(28+1)(216+1)(232+1)(264+1)

=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)(264+1)

=(24-1)(24+1)(28+1)(216+1)(232+1)(264+1)

=(28-1)(28+1)(216+1)(232+1)(264+1)

=(216-1)(216+1)(232+1)(264+1)

=(232-1)(232+1)(264+1)

=(264-1)(264+1)

=(2128-1)

Nếu thấy đúng thì thích cho mình nha

 

15 tháng 8 2016

\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+2\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)

\(=\left(2^{64}-1\right)\left(2^{64}+1\right)=2^{128}-1\)

15 tháng 8 2016

Ta có ; \(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)\)

= ............................................................................................

\(=\left(2^{64}-1\right)\left(2^{64}+1\right)=2^{128}-1\)

31 tháng 12 2019

a) (2x - 1)(3x + 5) - 2(-4x + 1)2 = 6x2 + 10x - 3x - 5 - 2(16x2 - 8x + 1) = 6x2 - 3x - 5 - 32x2 + 16x - 2 = -26x2 + 13x - 7

b) \(\frac{x^2-16}{4x-x^2}=\frac{\left(x-4\right)\left(x+4\right)}{-x\left(x-4\right)}=-\frac{x+4}{x}\)

c) \(\frac{2x-9}{x^2-5x+6}+\frac{2x+1}{x-3}+\frac{x+3}{2-x}\)

\(\frac{2x-9}{x^2-2x-3x+6}+\frac{\left(2x+1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}-\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-2\right)}\)

\(\frac{2x-9+2x^2-3x-2-x^2+9}{\left(x-3\right)\left(x-2\right)}\)

\(\frac{x^2-x-2}{\left(x-3\right)\left(x-2\right)}\)

\(\frac{x^2-2x+x-2}{\left(x-3\right)\left(x-2\right)}\)

\(\frac{\left(x+1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}=\frac{x+1}{x-3}\)

d) (x - 1)3 - (x + 1)3 + 6(x + 1)(x - 1)

= (x - 1 - x - 1)[(x - 1)2 + (x - 1)(x + 1) + (x + 1)2] + 6(x2 - 1)

= -2(x2 - 2x + 1  + x2 - 1 + x2 + 2x + 1) + 6x2 - 6

= -2(3x2 + 1) + 6x2 - 6

= -6x2 - 2 + 6x2  - 6

= -8

e) (2x + 7)2 - (4x + 14)(2x - 8) + (8 - 2x)2

= (2x + 7)2 - 2(2x + 7)(2x - 8) + (2x - 8)2

= (2x + 7 - 2x + 8)2

= 152 = 225

28 tháng 10 2017

Giúp vs @@Phạm Hoàng GiangTrần Quốc LộcTrần Thị Hươnghattori heijiTRẦN MINH HOÀNGAn Nguyễn BáRibi Nkok NgokKien Nguyen

Trần Đăng NhấtHung nguyen

28 tháng 10 2017

Sửa đề bài 1 : Rút gọn

a,\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right).........\left(2^{32}+1\right)-2^{64}\)

1 tháng 10 2020

Bài 1 : 

Ta có : \(VP=\left(a+b\right)^4=\left(a+b\right)\left(a+b\right)^3\)

\(=\left(a+b\right)\left(a^3+3a^2b+3ab^2+b^3\right)=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)

=> HĐT ko đc CM 

Bài 2 : 

a, \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)+7\)

\(=x^3+2x^2+4x-2x^2-4x-8-x+1+7=x^3-x=x\left(x^2-1\right)\)

Sửa đề : b, \(8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x+1\right)\)

\(=8\left(x^3-1\right)-8x^3+1=8x^3-8-8x^3+1=-7\)

1 tháng 10 2020

Xin phép chủ nahf cho mjnh sửa đề:D

\(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)

a,\(\left(a+b\right)^4\)

\(=\left[\left(a+b\right)^2\right]^2\)

\(=\left(a^2+2ab+b^2\right)^2\)

\(=\left[\left(a^2+2ab\right)+b^2\right]^2\)

\(=\left(a^2+2ab\right)^2+2\left(a^2+2ab\right)b^2+b^4\)

\(=a^4+4a^3b+4a^2b^2+2a^2b^2+4ab^3+b^4\)

\(=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)

Bài 2:

a,\(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)+7\)

\(=\left(x^3-8\right)-\left(x-1\right)+7\)

b,\(8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x-1\right)\)

\(=8\left(x^3-1\right)-\left(8x^3-1\right)\)

\(=8x^3-8-8x^3+1\)

\(=-7\)