Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(P=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2\left(x+\sqrt{x}\right)}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=x+\sqrt{x}-2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=x+\sqrt{x}\)
Ta có:
\(\left(3+2\sqrt{2}\right)^x+\left(3-2\sqrt{2}\right)^x=\left(\sqrt{2}+1\right)^{2x}+\left(\sqrt{2}-1\right)^{2x}\)
\(=\left(\left(\sqrt{2}+1\right)^x\right)^2+\left(\left(\sqrt{2}-1\right)^x\right)^2\)\(\ge2.\left(\sqrt{2}+1\right)^x.\left(\sqrt{2}-1\right)^x\)
\(=2.\left(2-1\right)^x\)= 2
Dấu "=" xảy ra <=> \(\left(\sqrt{2}+1\right)^x=\left(\sqrt{2}-1\right)^x\)
\(\Rightarrow x=0\)
a: \(P=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
b: \(P=x-\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)
Dấu '=' xảy ra khi x=1/4
\(D=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(1-x\right)^2}{2}\)
\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)
\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)