K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\dfrac{a+x+1}{a+x}:\dfrac{a+x-1}{a+x}\cdot\left(\dfrac{2ax-1+a^2+x^2}{2ax}\right)\)

\(=\dfrac{a+x+1}{a+x-1}\cdot\dfrac{\left(a+x\right)^2-1}{2ax}\)

\(=\dfrac{a+x+1}{a+x-1}\cdot\dfrac{\left(a+x+1\right)\left(a+x-1\right)}{2ax}\)

\(=\dfrac{\left(a+x+1\right)^2}{2ax}\)

\(=\dfrac{x^3-1}{x}\cdot\dfrac{x^2-1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x^2+x}{x}=2x+1\)

30 tháng 7 2016

\(=\left(\frac{x^3+8}{4x}\right):\left(\frac{x^2-2x+4}{4x}\right)=\frac{\left(x+2\right)\left(x^2-2x+4\right)}{4x}.\frac{4x}{\left(x^2-2x+\right)}=x+2\)

17 tháng 5 2016

\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{399}{400}\Rightarrow A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{19.21}{20.20}\Rightarrow\frac{1.2.3...19}{2.3.4...20}.\frac{3.4.5...21}{2.3.4...20}\) \(\Rightarrow A=\frac{1}{20}.\frac{21}{2}=\frac{21}{40}\)

18 tháng 5 2016

Sửa đê, toán 6.

3 tháng 8 2016

\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\left(ĐK:x\ne0;y\ne0\right)\)

\(=\frac{2}{xy}:\left(\frac{y-x}{xy}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}\cdot\frac{x^2y^2}{\left(y-x\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{-2xy}{\left(x-y\right)^2}+\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{-2xy+x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{\left(x-y\right)^2}{\left(x-y\right)^2}=1\)

 

3 tháng 8 2016

\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\left(dk:x\ne y\ne0\right)\)

miik ko nghĩ nó là toán lớp 7 đâu bn

16 tháng 7 2016

\(A=\frac{x^2}{x^2-1}-\frac{x^2}{x^2+1}\left(\frac{x}{x+1}+\frac{1}{x^2+x}\right)\)

=>\(A=\frac{x^2}{\left(x-1\right)\left(x+1\right)}-\frac{x^2}{x^2+1}\left[\frac{x}{x+1}+\frac{1}{x\left(x+1\right)}\right]\)

=>\(A=\frac{x^2}{\left(x-1\right)\left(x+1\right)}-\frac{x^2}{x^2+1}\left[\frac{x^2}{x\left(x+1\right)}+\frac{1}{x\left(x+1\right)}\right]\)

=>\(A=\frac{x^2}{\left(x-1\right)\left(x+1\right)}-\frac{x^2}{x^2+1}.\frac{x^2+1}{x\left(x+1\right)}\)

=>\(A=\frac{x^2}{\left(x-1\right)\left(x+1\right)}-\frac{x}{x+1}\)

=>\(A=\frac{x^2}{\left(x-1\right)\left(x+1\right)}-\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

=>\(A=\frac{x^2-x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

=>\(A=\frac{x^2-x^2+x}{\left(x-1\right)\left(x+1\right)}\)

=>\(A=\frac{x}{x^2-1}\)

21 tháng 5 2016
  1. Ta chứng minh bất đẳng thức phụ dưới đây: \(\frac{1}{\sqrt{x}\left(x+1\right)}=\frac{\sqrt{x}}{x\left(x+1\right)}=\sqrt{x}\left(\frac{1}{x}-\frac{1}{x+1}\right)=\sqrt{x}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x+1}}\right)\)\(=\left(1+\frac{\sqrt{x}}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)< 2\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\)

Áp dụng  : \(\frac{1}{\sqrt{1}.2}< 2.\left(1-\frac{1}{\sqrt{2}}\right)\)

\(\frac{1}{\sqrt{2}.3}< 2.\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)\)

...................................

\(\frac{1}{\sqrt{2015}.2016}< 2.\left(\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)\)

Cộng các BĐT trên với nhau được : \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}}< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)=2\left(1-\frac{1}{\sqrt{2016}}\right)< 2\left(1-\frac{1}{\sqrt{2025}}\right)=\frac{88}{45}\)

Từ đó suy ra đpcm

Cái ............... là gì vậy bn