Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2+y^2+z^2/y^2-2yx+z^2+z^2-2xy+x^2+x^2-2xy+y^2=x^2+y^2+z^2/2y^2+2x^2+2z^2-6xy=x^2+y^2+z^2/2(x^2+y^2+z^2)-6xy=1/2-6xy
xét mẫu ta có
=y^2 - 2yz + z^2 + z^2 -2xz + x^2 + x^2 -2xy +y^2
thêm bớt x^2,y^2,z^2 vào mẫu ta có
=3y^2 + 3x^2 + 3z^2 - (x^2 + y^2 + z^2 + 2xy + 2yz + 2xz)
đúng không
mà (x+y+z)=0 => (x+y+z)^2=0
mà (x^2 + y^2 + z^2 + 2xy + 2yz + 2xz) phân tích ra thành (x+y+z)^2
=> (x^2 + y^2 + z^2 + 2xy + 2yz + 2xz)=0
=> (x^2 + y^2 + z^2 )/ 3(x^2 + y^2 + z^2)
rút gọn thành 1/3
nhớ k nha chuẩn 100%
\(x+y+z=0\Rightarrow\hept{\begin{cases}x=-\left(y+z\right)\\y=-\left(z+x\right)\\z=-\left(x+y\right)\end{cases}}\)
\(\Rightarrow P=\frac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{\left[-\left(y+z\right)\right]^2+\left[-\left(z+x\right)\right]^2+\left[-\left(x+y\right)\right]^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{\left(y+z\right)^2+\left(z+x\right)^2\left(x+y\right)^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{-\left[\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2\right]}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=-1\)
\(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
\(=\frac{\left(x+y+z\right)^2-2\left(xy+yz+xz\right)}{2x^2+2y^2+2z^2-2xy+2yz+2xz}\)
\(=\frac{-2\left(xy+yz+xz\right)}{2\left(x+y+z\right)^2-6\left(xy+yz+xz\right)}\)
\(=-\frac{1}{3}\)
\(=\frac{x^2+y^2+z^2}{2x^2+2y^2+2z^2-2xy-2yz-2zx}=\frac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x^2+y^2+z^2+2xy+2yz+2xz\right)}\)
\(=\frac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2}=\frac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)(vì x+y+z=0)
tách mẫu số ra được: 2(x2+y2+z2)-2(xy+yz+xz) (1)
mà x+y+z=0
=> (x+y+z)2=0
=> x2+y2+z2= -2(xy+yz +xz) (2)
Thay (2) vào (1) ta được mẫu số: 3(x2+y2+z2)
Phân thức khi rút gọn được là: 1/3
Cho x+y+z=0 Rút gọn:\(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
Ta có: \(x+y+z=0\Rightarrow\hept{\begin{cases}-x=y-z\\-y=z-x\\-z=x-y\end{cases}}\)
Mà \(x^2=\left(-x\right)^2;y^2=\left(-y\right)^2;z^2=\left(-z\right)^2\)
Thế vào biểu thức, ta được:
\(\frac{x^2+y^2+z^2}{x^2+y^2+z^2}=1\)
\(x+y+z=0\)
\(\Rightarrow\left(x+y+z\right)^2=0\)
\(x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)
\(x^2+y^2+z^2=-2\left(xy+yz+zx\right)\)
\(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
\(=\frac{-2\left(xy+yz+zx\right)}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)}\)
\(=\frac{-2\left(xy+yz+zx\right)}{2\left[-2\left(xy+yz+zx\right)\right]-2\left(xy+yz+xz\right)}\)
\(=\frac{-2\left(xy+yz+zx\right)}{-4\left(xy+yz+zx\right)-2\left(xy+yz+xz\right)}\)
\(=\frac{-2\left(xy+yz+zx\right)}{-6\left(xy+yz+zx\right)}\)
\(=\frac{1}{3}\)
Ta có: \(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^2=\left(-z\right)^2\)
\(x^2+2xy+y^2=z^2\)
\(x^2+y^2-z^2=-2xy\)
\(\frac{2x^2y+2xy^2}{x^2+y^2-z^2}\)
\(=\frac{2xy\left(x+y\right)}{-2xy}\)
\(=\frac{-2xyz}{-2xy}\)
\(=z\)
Ta có: \(x+y+z=0\)
\(\Rightarrow\left(x+y+z\right)^2=0\)
\(x^2+y^2+z^2+2xy+2yz+2xz=0\)
\(\Rightarrow x^2+y^2+z^2=-2.\left(xy+yz+zx\right)\)
\(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
\(=\frac{-2.\left(xy+yz+zx\right)}{y^2+z^2+z^2+x^2+x^2+y^2-2.\left(xy+yz+zx\right)}\)
\(=\frac{-2.\left(xy+yz+zx\right)}{2.\left(x^2+y^2+z^2\right)-2.\left(xy+yz+zx\right)}\)
\(=\frac{-2.\left(xy+yz+zx\right)}{2.\left[-2.\left(xy+yz+zx\right)\right]-2.\left(xy+yz+zx\right)}\)
\(=\frac{-2.\left(xy+yz+zx\right)}{-6.\left(xy+yz+zx\right)}\)
\(=\frac{1}{3}\left(xy+yz+zx\ne0\right)\)
Tham khảo nhé~