\(\frac{1}{a^2-5a+6}+\frac{1}{a^2-7a+12}+\frac{1}{a^2-9a+20}+\frac{1}{a^2-11a+30}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

Đăỵ tổng là A

\(\Rightarrow A=\frac{1}{a^2-5a-4+10}+\frac{1}{a^2-7a-16+28}+\frac{1}{a^2-9a-25+45}+\frac{1}{a^2-11a-36+66}\)

\(\Rightarrow A=\frac{1}{\left(a^2-4\right)-\left(5a-10\right)}+\frac{1}{\left(a^2-16\right)-\left(7a-28\right)}+\frac{1}{\left(a^2-25\right)-\left(9a-45\right)}+\frac{1}{\left(a^2-36\right)-\left(11a-66\right)}\)

\(\Rightarrow A=\frac{1}{\left(a+2\right)\left(a-2\right)-5\left(a-2\right)}+\frac{1}{\left(a+4\right)\left(a-4\right)-7\left(a-4\right)}+\frac{1}{\left(a-5\right)\left(a+5\right)-9\left(a-5\right)}+\frac{1}{\left(a-6\right)\left(a+6\right)-11\left(a-6\right)}\)

\(\Rightarrow A=\frac{1}{\left(a-2\right)\left(a-3\right)}+\frac{1}{\left(a-4\right)\left(a-3\right)}+\frac{1}{\left(a-5\right)\left(a-4\right)}+\frac{1}{\left(a-6\right)\left(a-5\right)}\)

\(\Rightarrow A=\frac{1}{a-3}-\frac{1}{a-2}+\frac{1}{a-4}-\frac{1}{a-3}+\frac{1}{a-5}-\frac{1}{a-4}+\frac{1}{a-6}-\frac{1}{a-5}\)

\(\Rightarrow A=\frac{1}{a-6}-\frac{1}{a-2}\)

\(\Rightarrow A=\frac{\left(a-2\right)-\left(a-6\right)}{\left(a-6\right)\left(a-2\right)}=\frac{4}{\left(a-6\right)\left(a-2\right)}\)

9 tháng 7 2016

   Đặt \(A=\frac{a^2}{a^2-1}-\frac{a^2}{1+a^2}.\left(\frac{a}{a+1}+\frac{1}{a^2+a}\right)\)

Ta có:\(A=\frac{a^2}{a^2-1}-\frac{a^2}{1+a^2}.\frac{a}{a+1}-\frac{a^2}{1+a^2}.\frac{1}{a^2+a}\)

          \(A=\frac{a^2}{a^2-1}-\frac{a^3}{a+a^3+a^2+1}-\frac{a^2}{a+a^2+a^3+a^4}\)

\(=\left(\dfrac{2a+1}{2\left(a+2\right)}-\dfrac{a}{3\left(a-2\right)}-\dfrac{2a^2}{3\left(a-2\right)\left(a+2\right)}\right):\dfrac{13a+6}{24-12a}\)

\(=\dfrac{3\left(2a+1\right)\left(a-2\right)-2a\left(a+2\right)-4a^2}{6\left(a-2\right)\left(a+2\right)}:\dfrac{13a+6}{-12\left(a-2\right)}\)

\(=\dfrac{3\left(2a^2-3a-2\right)-2a\left(a+2\right)-4a^2}{6\left(a-2\right)\left(a+2\right)}\cdot\dfrac{-12\left(a-2\right)}{13a+6}\)

\(=\dfrac{6a^2-9a-6-2a^2-4a-4a^2}{a+2}\cdot\dfrac{-2}{13a+6}\)

\(=\dfrac{-\left(13a+6\right)}{a+2}\cdot\dfrac{-2}{13a+6}=\dfrac{2}{a+2}\)

27 tháng 5 2016

\(A=\left(\frac{1+2x}{2.\left(2+x\right)}-\frac{x}{3.\left(x-2\right)}+\frac{2x^2}{3.\left(4-x^2\right)}\right).\frac{24-12x}{6+13x}\)

        \(=\left[\frac{3.\left(1+2x\right)\left(2-x\right)-2x\left(x+2\right)+4x^2}{2.3.\left(x+2\right)\left(2-x\right)}\right].\frac{24-12x}{6+13x}\)

          \(=\frac{6+9x-6x^2-2x^2-4x+4x^2}{6.\left(4-x^2\right)}.\frac{24-12x}{6+13x}\)

             \(=\frac{6+5x-4x^2}{6.\left(4-x^2\right)}.\frac{12.\left(2-x\right)}{6+13x}\) \(=\frac{\left(6+5x-4x^2\right).2}{\left(x+2\right)\left(6+13x\right)}=\frac{12+10x-8x^2}{13x^2+32x+12}\)

11 tháng 11 2015

à quên 
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{5a}{5c}=\frac{3b}{3d}\)
Áp dụng tính chất dãy tỉ số = nhau 
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
\(\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

11 tháng 11 2015

LÀM CÁCH GIẢI LUÔN ĐI!!~~
 

26 tháng 6 2016

   \(\left(\frac{3a+1}{a^2-3a}+\frac{3a-1}{a^2+3a}\right)\):\(\frac{a^2+1}{a^2-9}\)

=\(\left[\frac{3a+1}{a\left(a-3\right)}+\frac{3a-1}{a\left(a+3\right)}\right]\)\(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)

=\(\left[\frac{\left(3a+1\right)\left(a+3\right)}{a\left(a-3\right)\left(a+3\right)}+\frac{\left(3a-1\right)\left(a-3\right)}{a\left(a+3\right)\left(a-3\right)}\right]\)\(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)

=\(\frac{3a^2+9a+a+3+3a^2-9a-a+3}{a\left(a-3\right)\left(a+3\right)}\): \(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)

=\(\frac{6a^2+6}{a\left(a-3\right)\left(a+3\right)}\)\(\frac{a^2+1}{\left(a-3\right)\left(a+3\right)}\)

=\(\frac{6\left(a^2+1\right)}{a\left(a-3\right)\left(a+3\right)}\).\(\frac{\left(a-3\right)\left(a+3\right)}{a^2+1}\)

=\(\frac{6}{a}\)

30 tháng 7 2016

\(\left(\frac{3a}{a^2-4}+\frac{1}{2-a}-\frac{2}{a+2}\right):\left(1-\frac{a^2+4}{a^2-4}\right)\)điều kiện : a khác {-2,2}

=\(\left(\frac{3a}{a^2-4}-\frac{a+2}{a^2-4}-\frac{2a-4}{a^2-4}\right):\left(-\frac{8}{a^2-4}\right)\)

=\(\left(\frac{3a-a-2-2a+4}{a^2-4}\right).\left(\frac{a^2-4}{-8}\right)\)

=\(-\frac{1}{4}\)

30 tháng 7 2016

\(=\left[\frac{3a}{\left(a-2\right)\left(a+2\right)}-\frac{1}{\left(a-2\right)}-\frac{2}{\left(a+2\right)}\right]:\left(\frac{a^2-4-a^2-4}{a^2-4}\right)=\left(\frac{3a-a-2-2a+4}{\left(a-2\right)\left(a+2\right)}\right).\frac{\left(a-2\right)\left(a+2\right)}{-8}=\frac{2}{\left(a-2\right)\left(a+2\right)}.\frac{\left(a-2\right)\left(a+2\right)}{-8}\)

\(=\frac{-1}{4}\)

4 tháng 8 2016

Bài này bạn chỉ cần đặt k rồi thế k vào là làm được à, dễ lắm