Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x^3+y^3+z^3-3xyz}{xy^2+xz\left(2y+z\right)}.\dfrac{x\left(x+y\right)+y\left(x-xy\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2}\\ =\dfrac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)}{xy^2+2xyz+x^2z}.\dfrac{x^2+xy-xy-xy^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\\ =\dfrac{\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]}{2xy^2+4xyz+2x^2z}.\dfrac{x^2-xy^2}{\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2}\\ =\dfrac{\left(x+y+z\right)\left(x^2-xy\right)}{2xy^2+4xy+2x^2z}\)
@@ ko ra nữa
Dat (x-y)2+(y-z)2+(x-z)2=A
=(x+y)3+z3-3x2y-3xy2-3xyz / A
=(x+y+z).(x2+2xy+y2-xy-yz+z2)-3xy(x+y+z) / A
=(x+y+z).(x2+y2+z2-xy-yz-xz) /A
=2(x+y+z).(x2+y2+z2-xy-yz-xz) /2A
=(x+y+z)[ (x2-2xy+y2)+(y2-2yz+z2)+(x2-2xz+z2) / 2A
=(x+y+z).[ (x-y}2+(y-z)2+(x-z)2 ] /2A
=(x+y+z). A /2A
=x+y+z /2
\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)^3-3\left(x+y\right)z\left(x+y+z\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3zx\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(=\frac{1}{2}\left(x+y+z\right)\left(x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\right)\)
\(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
Suy ra \(\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{1}{2}\left(x+y+z\right)\)
\(=\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2}\)
\(=\dfrac{\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)}{2\left(x^2+y^2+z^2-xy-xz-yz\right)}\)
\(=\dfrac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)}{2\left(x^2+y^2+z^2-xy-xz-yz\right)}\)
\(=\dfrac{x+y+z}{2}\)