Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2\sqrt{2}-\sqrt{5}+3\sqrt{2}\right)\left(\sqrt{18}-\sqrt{20}+2\sqrt{2}\right)\)
\(A=\left(2\sqrt{2}-\sqrt{5}+3\sqrt{2}\right)\left(\sqrt{9.2}-\sqrt{2^2.5}+2\sqrt{2}\right)\)
\(A=\left(5\sqrt{2}-\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}+2\sqrt{2}\right)\)
\(A=\left(5\sqrt{2}-\sqrt{5}\right)\left(5\sqrt{2}-2\sqrt{5}\right)\)
\(A=\left(5\sqrt{2}.5\sqrt{2}\right)-\left(5\sqrt{2}.2\sqrt{5}\right)-\left(\sqrt{5}.5\sqrt{2}\right)+\left(\sqrt{5}.2\sqrt{5}\right)\)
\(A=50-10\sqrt{10}-5\sqrt{10}+10\)
\(A=60-5\sqrt{10}\)
Chúc bạn học tốt!!!
d/ \(x=\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)
\(\Leftrightarrow x^3=3+\sqrt{9+\frac{125}{27}}+3-\sqrt{9+\frac{125}{27}}-3\left(\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\right)\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}.\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)
\(\Leftrightarrow x^3=6-3x\sqrt[3]{9-9-\frac{125}{27}}\)
\(\Leftrightarrow x^3=6-5x\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow x=1\)
c/
\(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{12}+4}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}\)
\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
\(=3-1=2\)
con cacacacacacacacacacacacacacacacacacca
@@22@22@22@@222@@2@@2@@@2@2
a) \(\left(2\sqrt{3}+\sqrt{5}\right)\sqrt{3}-\sqrt{60}\) = \(6+\sqrt{15}-2\sqrt{15}\)
= \(6-\sqrt{15}\)
b) \(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\) = \(5\sqrt{10}+10-5\sqrt{10}\) = \(10\)
c) \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\) = \(14-2\sqrt{21}-7+2\sqrt{21}\)
= \(7\)
d) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
= \(33-3\sqrt{22}-11+3\sqrt{22}\) = \(22\)
a)(2√3+√5)√3-√60
=6+√15-2√15
=6-√15
b)(5√2+2√5)√5-√250
=5√10+10-5√10
=10
c)(√28-√12-√7)√7+2√21
=14-2√21-7+2√21
=7
d)(√99-√18-√11)√11+3√22
=33-3√22-11+3√22
=22
Đương làm thì lại nhấn hủy TvT
Bài 1.
a) \(\sqrt{\left(4-3\sqrt{2}\right)^2}\)
\(=\left|4-3\sqrt{2}\right|\)
\(=-\left(4-3\sqrt{2}\right)=3\sqrt{2}-4\)( vì \(3\sqrt{2}>4\))
b) \(\sqrt{\left(\sqrt{3-1}\right)^2}+\sqrt{\left(\sqrt{3-2}\right)^2}\)
\(=\sqrt{\left(\sqrt{2}\right)^2}+\sqrt{1^2}\)
\(=\left|\sqrt{2}\right|+\left|1\right|\)
\(=\sqrt{2}+1=1+\sqrt{2}\)
Bài 2.
Sửa VP = \(\left(\sqrt{5}+2\right)^2\)
VT = \(5+4\sqrt{5}+4=\left(\sqrt{5}\right)^2+2\cdot2\cdot\sqrt{5}+2^2=\left(\sqrt{5}+2\right)^2\)= VP ( đpcm )
Còn ý b) em chưa làm được :((
A= 60 - 15✔10
Bạn có thể giải cụ thể giúp mk đc ko