Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left[\dfrac{x+3}{\left(x-3\right)^2}+\dfrac{6}{x^2-9}-\dfrac{x-3}{\left(x+3\right)^2}\right]\left[1:\left(\dfrac{24x^2}{x^4-81}-\dfrac{12}{x^2+9}\right)\right]\)
\(\left(ĐKXĐ:x\ne\pm3\right)\)
\(=\dfrac{\left(x+3\right)^3+6\left(x-3\right)\left(x+3\right)-\left(x-3\right)^3}{\left(x-3\right)^2\left(x+3\right)^2}\cdot\left[1:\dfrac{24x^2-12\left(x^2-9\right)}{\left(x^2-9\right)\left(x^2+9\right)}\right]\)
\(=\dfrac{x^3+9x^2+27x+27+6x^2-54-x^3+9x^2-27x+27}{\left(x-3\right)^2\left(x+3\right)^2}\cdot\dfrac{\left(x^2-9\right)\left(x^2+9\right)}{24x^2-12x^2+108}\)
\(=\dfrac{24x^2\left(x^2+9\right)\left(x-3\right)\left(x+3\right)}{12\left(x^2+9\right)\left(x-3\right)^2\left(x+3\right)^2}\)
\(=\dfrac{2x^2}{x^2-9}\)
b) \(B=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left[\left(x-2\right)+\dfrac{10-x^2}{x+2}\right]\)
\(=\left(\dfrac{x}{x^2-4}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\left(\dfrac{x-2}{1}+\dfrac{10-x^2}{x+2}\right)\)
\(=\dfrac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}:\dfrac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\)
\(=\dfrac{x-2x-4+x-2}{x^2-4}\cdot\dfrac{x+2}{x^2-4+10-x^2}\)
\(=\dfrac{-6\left(x+2\right)}{6\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{-1}{x-2}\)
phần b điều kiện xác định là \(x\ne\pm2\) nhé
Bạn ơi mik ra \(\dfrac{x^3+45x-54}{12\left(x-3\right)\left(x+3\right)}\) có đúng không bạn?
Mình rút chx hết bạn bạn gửi cách làm bạn qua mình tham khảo đc k ạ?
\(P=\left[\dfrac{x^2}{2x-9}\left(\dfrac{3}{x}-\dfrac{1}{x-3}\right)-\dfrac{x+6}{2\left(x-3\right)}\right]:\dfrac{x+2}{2\left(x-3\right)}\)
\(\Leftrightarrow P=\left[\dfrac{x^2}{2x-9}\left(\dfrac{3\left(x-3\right)}{x\left(x-3\right)}-\dfrac{x}{x\left(x-3\right)}\right)-\dfrac{x+6}{2\left(x-3\right)}\right]:\dfrac{x+2}{2\left(x-3\right)}\)
\(\Leftrightarrow P=\left[\dfrac{x^2}{2x-9}.\dfrac{3x-9-x}{x\left(x-3\right)}-\dfrac{x+6}{2\left(x-3\right)}\right]:\dfrac{x+2}{2\left(x-3\right)}\)
\(\Leftrightarrow P=\left[\dfrac{x^2}{2x-9}.\dfrac{2x-9}{x\left(x-3\right)}-\dfrac{x+6}{2\left(x-3\right)}\right]:\dfrac{x+2}{2\left(x-3\right)}\)
\(\Leftrightarrow P=\left[\dfrac{x^2.\left(2x-9\right)}{\left(2x-9\right)x\left(x-3\right)}-\dfrac{x+6}{2\left(x-3\right)}\right]:\dfrac{x+2}{2\left(x-3\right)}\)
\(\Leftrightarrow P=\left[\dfrac{x}{x-3}-\dfrac{x+6}{2\left(x-3\right)}\right]:\dfrac{x+2}{2\left(x-3\right)}\)
\(\Leftrightarrow P=\left[\dfrac{2x}{2\left(x-3\right)}-\dfrac{x+6}{2\left(x-3\right)}\right]:\dfrac{x+2}{2\left(x-3\right)}\)
\(\Leftrightarrow P=\dfrac{2x-\left(x+6\right)}{2\left(x-3\right)}:\dfrac{x+2}{2\left(x-3\right)}\)
\(\Leftrightarrow P=\dfrac{2x-x-6}{2\left(x-3\right)}:\dfrac{x+2}{2\left(x-3\right)}\)
\(\Leftrightarrow P=\dfrac{x-6}{2\left(x-3\right)}:\dfrac{x+2}{2\left(x-3\right)}\)
\(\Leftrightarrow P=\dfrac{x-6}{2\left(x-3\right)}.\dfrac{2\left(x-3\right)}{x+2}\)
\(\Leftrightarrow P=\dfrac{\left(x-6\right).2\left(x-3\right)}{2\left(x-3\right).\left(x+2\right)}\)
\(\Leftrightarrow P=\dfrac{x-6}{x+2}\)
a: \(=-\dfrac{1}{x\left(x-1\right)}+\dfrac{-1}{\left(x-1\right)\left(x-2\right)}+\dfrac{-1}{\left(x-2\right)\left(x-3\right)}+...+-\dfrac{1}{\left(x-4\right)\left(x-5\right)}+\dfrac{1}{x-5}\)
\(=\dfrac{1}{x}-\dfrac{1}{x-1}+\dfrac{1}{x-1}-\dfrac{1}{x-2}+\dfrac{1}{x-2}-\dfrac{1}{x-3}+...+\dfrac{1}{x-4}-\dfrac{1}{x-5}+\dfrac{1}{x-5}\)
=1/x
b: \(=\dfrac{1}{x}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+9}+\dfrac{1}{x+9}\)
=1/x
\(a,\frac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)
\(=\frac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)
\(=\frac{2\left(x-2\right)}{x+2}\)
Với \(x=\frac{1}{2}\)
\(\Rightarrow\frac{2\left(x-2\right)}{x+2}=\frac{2\left(\frac{1}{2}-2\right)}{\frac{1}{2}+2}=\frac{2.-\frac{3}{2}}{\frac{5}{2}}=-3.\frac{2}{5}=\frac{-6}{5}\)
b,Do x = -5; y = 10=> y = -2x
Thay y = -2x vào biểu thức ta được
\(\frac{x^3-x^2\left(-2x\right)+x\left(-2x\right)^2}{x^3+\left(-2x\right)^3}\)
\(=\frac{x^3+2x^3+2x^2}{x^3-8x^3}\)
\(=\frac{3x^3+2x^2}{-7x^3}=\frac{3}{-7}+\frac{2}{-7x}\)
Thay x = -5 là đc