Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{x+3}{x^2-3x}-\frac{x}{x^2-9}\right)\)
\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{x+3}{x\left(x-3\right)}-\frac{x}{\left(x-3\right)\left(x+3\right)}\right)\)
\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{\left(x+3\right)^2}{x\left(x-3\right)\left(x+3\right)}-\frac{x^2}{\left(x-3\right)\left(x+3\right)x}\right)\)
\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{\left(x+3\right)^2-x^2}{x\left(x-3\right)\left(x+3\right)}\right)\)
\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{x^2+6x+9-x^2}{x\left(x^2-3\right)}\right)\)
\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{3\left(2x+3\right)}{x\left(x^2-3\right)}\right)\)
\(=\frac{x}{x-3}-\frac{3x^2+9x}{x\left(x^2-3\right)}\)(mk sợ mk làm sai lắm nếu làm sai thì sory nhá)
\(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right):\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x^2+2x}\left(x\ne-1;x\ne0;x\ne-2\right)\)
\(=\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right):\frac{3x^3-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\left(\frac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3x+3}{\left(x+1\right)\left(x^2-x+1\right)}\right)\)\(:\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{x^2-x+1-3+3x+3}{\left(x+1\right)\left(x^2-x+1\right)}:\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{x^2+2x+1}{\left(x+1\right)\left(x^2-x+1\right)}:\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+1\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\frac{\left(x+1\right)\left(x+2\right)}{3\left(x^2-x+1\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
\(=\frac{\left(x+2\right)^2\left(x+1\right)}{3\left(x^2-x+1\right)^2}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)
a) ĐKXĐ: \(x\ne\pm1\)
\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right):\left(\frac{1-x}{\left(1+x\right)\left(1-x\right)}-\frac{x\left(1+x\right)}{\left(1-x\right)\left(1+x\right)}+\frac{x}{x^2-1}\right)\)
\(=\frac{4x-1}{x^2-1}:\left(\frac{-x^2-2x+1}{1-x^2}-\frac{x}{1-x^2}\right)=\frac{4x-1}{x^2-1}:\frac{-x^2-3x+1}{1-x^2}\)
\(=\frac{1-4x}{1-x^2}:\frac{-x^2-3x+1}{1-x^2}=\frac{\left(1-4x\right)\left(1-x^2\right)}{\left(1-x^2\right)\left(-x^2-3x+1\right)}\)
\(=\frac{1-4x}{-x^2-3x+1}=\frac{4x-1}{x^2+3x-1}\) (chắc hết rút gọn được rồi)