K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 1 2019

ĐKXĐ: \(x\ge0;x\ne1\)

Sửa lại đề chỗ \(\dfrac{\sqrt{x-1}}{\sqrt{x}+2}\) thành \(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

\(P=\dfrac{3\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)

\(P=\dfrac{3\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

\(P=\dfrac{3\sqrt{x}-\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

\(P=\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=2-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

\(P=\dfrac{2\sqrt{x}+4-\sqrt{x}+1}{\sqrt{x}+2}=\dfrac{\sqrt{x}+5}{\sqrt{x}+2}=1+\dfrac{3}{\sqrt{x}+2}\)

Để P lớn nhất \(\Rightarrow\dfrac{3}{\sqrt{x}+2}\) lớn nhất

\(\sqrt{x}+2\ge2\Rightarrow\dfrac{3}{\sqrt{x}+2}\le\dfrac{3}{2}\)

\(\Rightarrow P_{max}=1+\dfrac{3}{2}=\dfrac{5}{2}\) khi \(\sqrt{x}+2=2\Leftrightarrow x=0\)

19 tháng 1 2019

a ) ĐK : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)\(P=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^{^2}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+3}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{x+4\sqrt{x}+3}\)

29 tháng 12 2017

a. ĐKXĐ : x>1.

b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)

c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:

\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)

Vậy giá trị của A tại \(x=4-2\sqrt{3}\)\(1+3\sqrt{3}\).

15 tháng 6 2017

Lần sau ghi dấu ra xíu nhé :v

a) Đặt \(\sqrt{x}=a\Rightarrow B=\left(\dfrac{a}{a+4}+\dfrac{4}{a-4}\right):\dfrac{a^2+16}{a+2}\)

Quy đồng,rút gọn : \(B=\dfrac{a+2}{a^2-16}\Rightarrow B=\dfrac{\sqrt{x}+2}{x-16}\)

b) \(B\left(A-1\right)=\dfrac{\sqrt{x}+2}{x-16}\left(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}-1\right)=\dfrac{2}{x-16}\)

x - 16 là ước của 2 => \(x\in\left\{14;15;17;18\right\}\)

mới làm quen toán 9 ;v có gì k rõ ae chỉ bảo nhé :))

15 tháng 6 2017

dung ko the ban, sao ngan the ?

a: Sửa đề; \(P=\left(\dfrac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\right)\cdot\left(\dfrac{1}{1-\sqrt{x}}-1\right)\)

\(=\dfrac{3x+3\sqrt{x}-3-x+1+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{1-1+\sqrt{x}}{1-\sqrt{x}}\)

\(=\dfrac{3x+3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}}{1-\sqrt{x}}=\dfrac{3\sqrt{x}}{1-\sqrt{x}}\)

b: Để \(P=\sqrt{x}\) thì \(3\sqrt{x}=\sqrt{x}-x\)

\(\Leftrightarrow x+2\sqrt{x}=0\)

hay x=0

17 tháng 9 2018

bn ơi! sai đề thì pải

a: \(C=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{1}{x-\sqrt{x}+1}\)

\(=\dfrac{x-\sqrt{x}+1-3+\sqrt{x}+1}{x\sqrt{x}+1}\)

\(=\dfrac{x-1}{x\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{x-\sqrt{x}+1}\)

b: Để C<1 thì C-1<0

\(\Leftrightarrow\dfrac{\sqrt{x}-1-x+\sqrt{x}-1}{x-\sqrt{x}+1}< 0\)

=>\(-x+2\sqrt{x}-2< 0\)(luôn đúng)

 

28 tháng 1 2019

A có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}\ne0\\\sqrt{x}-1\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\\sqrt{x}\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne1\end{matrix}\right.\)

Ta có:

A = \(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

= \(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}\left(2\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

= \(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\)

= \(\dfrac{-\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{-\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=-1\)

Kết luận: ...

banhqua

28 tháng 1 2019

ĐK của nó còn là: x ≥ 0 nữa dung doan nhé, mình viết thiếu...

banhqua

a: \(A=\left(2\sqrt{5}-3\sqrt{5}+3\sqrt{5}\right)\cdot\sqrt{5}=2\sqrt{5}\cdot\sqrt{5}=10\)

\(B=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\sqrt{x}-1+\sqrt{x}=2\sqrt{x}-1\)

b: A=2B

=>\(10=4\sqrt{x}-2\)

=>\(4\sqrt{x}=12\)

=>x=9(nhận)

2 tháng 6 2017

\(P=\frac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\frac{\sqrt{x}+3}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\left(ĐKXĐ:x\ne1;x\ge0\right)\)

\(P=\frac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x+3}}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\)

\(P=\frac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{3x-8+5\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{3x-3\sqrt{x}+8\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{\left(3\sqrt{x}+8\right)\left(\sqrt{x-1}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}\)

b)Để \(P< \frac{15}{4}\)thì \(\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}< \frac{15}{4}\)

      Ta có:\(\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}< \frac{15}{4}\)

          \(\Leftrightarrow\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}-\frac{15}{4}< 0\)

           \(\Leftrightarrow\frac{12\sqrt{x}+32-15\sqrt{x}-30}{4\left(\sqrt{x}+2\right)}< 0\)

            \(\Leftrightarrow\frac{-\left(3\sqrt{x}+2\right)}{4\sqrt{x}+8}< 0\)

                 Vì \(x\ge0;x\ne1\)

                              Do đó \(0< 4\sqrt{x}+8\)

   Mà \(-\left(3\sqrt{x}+2\right)< 0\)

          Vậy \(P< \frac{15}{4}\left(đpcm\right)\)

c)Ta có:\(P=\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}\)

             \(\Leftrightarrow P=\frac{3\sqrt{x}+6+2}{\left(\sqrt{x}+2\right)}\)

             \(\Leftrightarrow P=\frac{3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)}+\frac{2}{2\sqrt{x}+2}\)

              \(\Leftrightarrow P=3+\frac{2}{\sqrt{x}+2}\)

Vì \(x\ge0;x\ne1\Rightarrow\frac{2}{\sqrt{x}+2}\le1\)

       Do đó \(P\le4\Leftrightarrow x=1\)

                Vậy Max P=4 khi x=1

2 tháng 6 2017

P=3x+3√x−9(√x−1)(√x+2) +√x+3√x+2 −√x−2√x−1 

P=3x+3√x−9(√x−1)(√x+2) +(√x+3)(√x−1)(√x+2)(√x−1) −x−4(√x−1)(√x+2) 

P=3x+3√x−9+x+2√x−3−x+4(√x−1)(√x+2) 

P=3x−8+5√x(√x−1)(√x+2) 

P=3x−3√x+8√x−8(√x−1)(√x+2) 

P=(3√x+8)(√x−1)(√x−1)(√x+2) 

P=(3√x+8)(√x+2) 

b)Để P<154 thì (3√x+8)(√x+2) <154 

      Ta có:(3√x+8)(√x+2) <154 

          ⇔(3√x+8)(√x+2) −154 <0

           ⇔12√x+32−15√x−304(√x+2) <0

            ⇔−(3√x+2)4√x+8 <0

                 Vì x≥0;x≠1

                              Do đó 0<4√x+8

   Mà −(3√x+2)<0

          Vậy P<154 (đpcm)

c)Ta có:P=(3√x+8)(√x+2) 

             ⇔P=3√x+6+2(√x+2) 

             ⇔P=3(√x+2)(√x+2) +22√x+2 

              ⇔P=3+2√x+2 

Vì x≥0;x≠1⇒2√x+2 ≤1

       Do đó 

12 tháng 5 2017

a/ ĐKXĐ: \(x\ge0,x\ne1\)

\(P=\left(\dfrac{3}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{x-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)

= \(\dfrac{3\left(\sqrt{x}+1\right)+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

= \(\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

= \(\dfrac{4\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

= \(\dfrac{4\sqrt{x}}{\sqrt{x}+1}\)

b/ Với \(x\ge0,x\ne1\)

Để \(P=\sqrt{x}-1\Leftrightarrow\dfrac{4\sqrt{x}}{\sqrt{x}+1}=\sqrt{x}-1\)

\(\Leftrightarrow4\sqrt{x}=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow x-4\sqrt{x}-1=0\)

\(\Leftrightarrow\left(\sqrt{x}-2+\sqrt{5}\right)\left(\sqrt{x}-2-\sqrt{5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2+\sqrt{5}=0\\\sqrt{x}-2-\sqrt{5}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2-\sqrt{5}\left(ktm\right)\\\sqrt{x}=2+\sqrt{5}\left(tm\right)\end{matrix}\right.\)

\(\Leftrightarrow x=9+4\sqrt{5}\)

Vậy để \(P=\sqrt{x}-1\) thì \(x=9+4\sqrt{5}\)