Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+2+22+23+...+22018+22019
>2A=2(1+2+22+23+...+22018+22019)
=>2A=2+22+23+...+22018+22019
=>2A-A=(2+22+23+...+22019+22020)-(1 + 2 + 22 + 23 + ... + 22018 + 22019)
=>A=22020-1
B=1 + 32 + 34 + 36 +...+ 32018 + 32020
=>9B=3(1 + 32 + 34 + 36 +...+ 32018 + 32020)
=>9B=3+32 + 34 + 36 +...+ 32020 + 32022
=>9B-B=(3+32 + 34 + 36 +...+ 32018 + 32020)-(1 + 32 + 34 + 36 +...+ 32018 + 32020)
=.8B=32022-1
=>B=32022:8-1
\(A=1+2^1+2^2+...+2^{2017}\)
\(2A=2+2^2+2^3+...+2^{2018}\)
\(2A-A=2^{2018}-1hayA=2^{2018}-1\)
2; 3 tuong tu
1) A = 1 + 2 + 22 + 23 + .... + 22018
2A = 2 + 22 + 23 + 24 + ..... + 22019
2A - A = ( 2 + 22 + 23 + 24 + ..... + 22019 ) - ( 1 + 2 + 22 + 23 + .... + 22018 )
Vậy A = 22019 - 1
2) B = 1 + 3 + 32 + 33 + ..... + 32018
3A = 3 + 32 + 33 + ...... + 32019
3A - A = ( 3 + 32 + 33 + ...... + 32019 ) - ( 1 + 3 + 32 + 33 + ..... + 32018 )
2A = 32019 - 1
Vậy A = ( 32019 - 1 ) : 2
3) C = 1 + 4 + 42 + 43 + ...... + 42018
4A = 4 + 42 + 43 + ...... + 42019
4A - A = ( 4 + 42 + 43 + ...... + 42019 ) - ( 1 + 4 + 42 + 43 + ...... + 42018 )
3A = 42019 - 1
Vậy A = ( 42019 - 1 ) : 3
\(\frac{2^5.7+2^5}{2^5.5^2-2^5.3}=\frac{2^5.\left(7+1\right)}{2^5.\left(5^2-3\right)}=\frac{8}{25-3}=\frac{8}{22}=\frac{4}{11}\)
\(\frac{3^4.5-3^6}{3^4.13+3^4}=\frac{3^4.\left(5-3^2\right)}{3^4.\left(13+1\right)}=\frac{5-9}{14}=\frac{-4}{14}=\frac{-2}{7}\)
\(\frac{-2}{7}=\frac{-22}{77}\)
\(\frac{4}{11}=\frac{28}{77}\)
A = 1 + 2 + 22 + 23 + ... + 259 + 260
2A = 2 + 22 + 23 + 24 + ... + 260 + 261
2A - A = 261 - 1
B = 3 + 32 + 33 + 34 + ... + 32018 + 32019
3B = 32 + 33 + 34 + 35 + ... + 32019 + 32020
3B - B = 32020 - 3
B = 32020−32
ta có
\(A=2^0+2^1+2^2+...+2^{60}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{61}\)
\(\Rightarrow2A-A=2^{61}-1\)
\(\Rightarrow A=2^{61}-1\)
tương tự với biểu thức B bạn lấy 3B - B còn 2B rồi chia cho 2 sẽ ra \(\frac{3^{2020}-3}{2}\)