Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a, \(A=\frac{x^2-9}{x^2-6x+9}=\frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}=\frac{x+3}{x-3}\)
b, \(B=\frac{9x^2-16}{3x^2-4x}=\frac{\left(3x-4\right)\left(3x+4\right)}{x\left(3x-4\right)}=\frac{3x+4}{x}\)
c, \(C=\frac{x^2+4x+4}{2x+4}=\frac{\left(x+2\right)^2}{2\left(x+2\right)}=\frac{x+2}{2}\)
d, \(D=\frac{2x-x^2}{x^2-4}=\frac{x\left(2-x\right)}{\left(x-2\right)\left(x+2\right)}=-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=-\frac{x}{x+2}\)
e, \(E=\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x-2}\)
Rút gọn : \(P=\left(\frac{1}{x-2}-\frac{1}{x+2}+1\right):\frac{1}{x^2-4}\)
\(P=\left(\frac{x+2}{x^2-4}-\frac{x-2}{x^2-4}+\frac{\left(x+2\right)\left(x-2\right)}{x^2-4}\right):\frac{1}{x^2-4}\)
\(P=\frac{x+2-x+2+x^2-4}{x^2-4}:\frac{1}{x^2-4}\)
\(P=\frac{x^2}{x^2-4}.\frac{x^2-4}{1}\)
\(P=x^2\)
........
mk chỉ biết làm rút gọn thôi nha
a, \(\frac{x^{32}+x^{16}+1}{x^{16}+x^8+1}\)
\(=\frac{x^8+x^4+1}{x^4+x^2+1}\) Vậy phân thức \(a=\frac{x^8+x^4+1}{x^4+x^2+1}\)
P/s; Căn thức a, là phân số tối giản
b, \(\frac{x^8+3x^4+4}{x^4+x^2+2}\)
\(=\frac{x^4+3x^2+2}{x^2+x^1+1}\) Vậy căn thức \(b=\frac{x^4+3x^2+2}{x^2+x^1+1}\)
P/s; Căn thức b, có thể rút gọn được cho 2 và 4
Em ko chắc đâu nhé *-*
a)\(\frac{x^3-x}{3x+3}=\frac{x.\left(x^2-1\right)}{3.\left(x+1\right)}=\frac{x.\left(x-1\right).\left(x+1\right)}{3.\left(x+1\right)}=\frac{x.\left(x+1\right)}{3}=\frac{x^2+x}{3}\)
a, Điều kiện xác định: x<>0
b, Điều kiện xác định: x <> -1/3
c, Điều kiện xác định: x<>2
d, Điều kiện xác định: a<>0 và b<>0; b<>2a
A : không rút gọn được
\(B=\frac{4x^2\left(x-2\right)+3\left(x-2\right)}{3x\left(4x^2+3\right)+4x^2+3}=\frac{\left(4x^2+3\right)\left(x-2\right)}{\left(4x^2+3\right)\left(3x+1\right)}=\frac{x-2}{3x+1}\)
\(C=\frac{x^4-1}{x^3+2x^2-x-2}=\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x+2\right)\left(x^2-1\right)}=\frac{x^2+1}{x+2}\)
\(D=\frac{a^3+b^3}{a^3+\left(a-b\right)^3}=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a+a-b\right)\left(a^2-a^2+ab+a^2-2ab+b^2\right)}\)\(=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(2a-b\right)\left(a^2-ab+b^2\right)}=\frac{a+b}{2a-b}\)
Chọn B