K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

\(\frac{2xy-x^2+z^2-y^2}{-x^2+y-z^2+2xz}\)

\(=\frac{-\left[\left(x^2-2xy+y^2\right)-z^2\right]}{-\left[\left(x^2-2xz+z^2\right)-y\right]}\)

\(=\frac{-\left[\left(x-y\right)^2-z^2\right]}{-\left[\left(x-z\right)^2-y\right]}\)

\(=\frac{-\left(x-y-z\right)\left(x-y+z\right)}{-\left(x-z\right)^2+y}\)

9 tháng 12 2018

\(\frac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)

\(=\frac{\left(x-y+z\right)^2}{\left(x-y\right)^2-z^2}\)

\(=\frac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}\)

\(=\frac{x-y+z}{x-y-z}\)

27 tháng 5 2016

A=\(\frac{2xy-x^2+z^2-y^2}{x^2+z^2-y^2+2xz}\)=\(\frac{z^2-\left(x^2-2xy+y^2\right)}{\left(x^2+2xz+z^2\right)-y^2}\)=\(\frac{z^2-\left(x-y\right)^2}{\left(x+z\right)^2-y^2}\)=\(\frac{\left(z+x-y\right)\left(z-x+y\right)}{\left(x+z-y\right)\left(x+z+y\right)}\)=\(\frac{\left(z-x+y\right)}{\left(x+z+y\right)}\)

29 tháng 6 2017

a)= \(\frac{\left(2x+3\right)^2}{2x^2+3x-4x-6}\)

=\(\frac{\left(2x+3\right)^2}{x\left(2x+3\right)-2\left(2x+3\right)}\)

\(\frac{\left(2x+3\right)^2}{\left(x-2\right)\left(2x+3\right)}\)

=\(\frac{2x+3}{x-2}\)

29 tháng 6 2017

b) = \(\frac{3\left|x-4\right|}{3x^2-3x-1296}\)

\(\frac{3\left|x-4\right|}{3\left(x^2-x-432\right)}\)

=\(\frac{\left|x-4\right|}{x^2-x-432}\)

1 tháng 12 2017

c) hang dang thuc ( x -y+z)^2

o duoi phan h hang dang thuc luon

a) phan h nhan tu ra sao cho co tử la (x-1)(3x^2 -4x +1)

mau la (x-1)(2x^2 -x-3)

 b ) k nhin dc de

22 tháng 10 2021

\(\frac{\left(x-y\right)^3+3xy.\left(x+y\right)+y^3}{x-6y}\)

\(=\frac{x^3-3x^2y+3xy^2-y^3+3x^2y+3xy^2+y^3}{x-6y}\)

\(=\frac{x^3+\left(-3x^2y+3x^2y\right)+\left(3xy^2+3xy^2\right)+\left(-y^3+y^3\right)}{x-6y}\)

\(=\frac{x^3+6xy^2}{x-6y}\)

\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)

\(=\dfrac{\left(-x+y-z\right)^2}{\left(x-y\right)^2-z^2}\)

\(=\dfrac{\left[-\left(x-y+z\right)\right]^2}{\left(x-y-z\right)\left(x-y+z\right)}\)

\(=\dfrac{x-y+z}{x-y-z}\)

18 tháng 12 2018

Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)

Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)

Tương tự thay vào mà quy đồng

30 tháng 7 2016

đề có đúng k vậy bạn
 

30 tháng 7 2016

\(\frac{x^2+y^2-z^2-2zt+2xy-t^2}{x^2-y^2+z^2-2ty+2xz-t^2}=\frac{\left(x^2+2xy+y^2\right)-\left(z^2+2zt+t^2\right)}{\left(x^2+2xz+z^2\right)-\left(y^2+2ty+t^2\right)}=\)

\(\frac{\left(x+y\right)^2-\left(z+t\right)^2}{\left(x+z\right)^2-\left(y+t\right)^2}=\frac{\left(x+y-z-t\right)\left(x+y+z+t\right)}{\left(x+z-y-t\right)\left(x+z+y+t\right)}=\frac{x+y-z-t}{x+z-y-t}\)

ủa? là mình làm sai hay bạn ghi đề sai vậy?