K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2020

\(\frac{2.3+6.9+10.15+14.21}{2.5+6.15+10.25+14.35}\)

Rút gọn:

\(=\frac{3}{5}+\frac{3}{5}+\frac{3}{5}+\frac{3}{5}\)

\(=\frac{12}{5}\)

21 tháng 4 2020

\(\frac{2.3+6.9+10.15+14.21}{2.5+6.15+10.25+14.35}=\frac{2.3+6.3.3+10.5.3+14.7.3}{2.5+6.3.5+10.5.5+14.7.5}\)

\(=\frac{3\left(2.1+6.3+10.5+14.7\right)}{5\left(2.1+6.3+10.5+14.7\right)}=\frac{3}{5}\)

20 tháng 4 2020

\(\frac{1.2+1.4+3.6+4.8}{2.3+4.6+6.9+8.12}\)

=\(\frac{1.2}{2.3}\)+\(\frac{1.4}{4.6}\)+\(\frac{3.6}{6.9}\)+\(\frac{4.8}{8.12}\)

\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{3}\)+\(\frac{1}{3}\)

\(\frac{2}{6}+\frac{1}{6}+\frac{2}{6}+\frac{2}{6}\)

=\(\frac{7}{6}\)

20 tháng 4 2020

Mình nghĩ đề bài phải là:

          \(\frac{1.2+2.4+3.6+4.8}{2.3+4.6+6.9+8.12}\)   *2.3 + 4.6 + 6.9 + 8.12 = 3.(1.2 + 2.4 + 3.6 + 4.8)*

\(=\)\(\frac{1\left(1.2+2.4+3.6+4.8\right)}{3\left(1.2+2.4+3.6+4.8\right)}\)

\(=\)\(\frac{1}{3}\)

\(=\frac{4}{7}\)

23 tháng 4 2020

Bài giải

a) Ta có : \(\frac{4545+101}{6969-303}=\frac{45.101+101}{69.101-101.3}=\frac{101.\left(45+1\right)}{101.\left(69-3\right)}=\frac{101.46}{101.66}=\frac{23}{33}\)

b) Ta có : \(\frac{2929-101}{2.1919+404}=\frac{29.101-101}{2.19.101+4.101}=\frac{101.\left(29-1\right)}{101.\left(19.2+4\right)}=\frac{28}{42}=\frac{2}{3}\)

23 tháng 4 2020

a)\(\frac{4545+101}{6969-303}\)\(\frac{\left(4545:45\right)+101}{\left(6969:69\right)-303}\)\(\frac{101+101}{101-303}\)=\(\frac{202}{-202}\)=-1 

b)\(\frac{2929-101}{2.1919+404}\)\(\frac{2929-101}{3838+404}\)=\(\frac{\left(2929:29\right)-101}{\left(3838:38\right)+404}\)=\(\frac{101-101}{101+404}\)=\(\frac{0}{505}\)=0

học tốt 

31 tháng 8 2016

\(\frac{1.2+3.6+5.10+7.14}{2.3+6.9+10.15+14.21}\)

\(=\frac{1.2+3.6+5.10+7.14}{1.2.3+3.6.3+5.10.3+7.14.3}\)

\(=\frac{1.2+3.6+5.10+7.14}{3.\left(1.2+3.6+5.10+7.14\right)}\)

\(=\frac{1}{3}\)

\(\dfrac{2\cdot3-4\cdot6+6\cdot9}{2\cdot5-4\cdot10+6\cdot15}\)

\(=\dfrac{2\cdot3\left(1-2\cdot2+3\cdot3\right)}{2\cdot5\left(1-2\cdot2+3\cdot3\right)}\)

\(=\dfrac{3}{5}\)

4 tháng 5 2020

Bg

Để phân số \(\frac{n^2+1}{n-2}\)có giá trị là một số nguyên thì n2 + 1 (tử số) chia hết cho n - 2 (mẫu số)

Ta có: n2 + 1 \(⋮\)n - 2     (n \(\inℤ\))

=> n(n - 2) + 2(n - 2) - 3 \(⋮\)n - 2

Vì n(n - 2) + 2(n - 2) - 3 \(⋮\)n - 2 với n(n - 2) \(⋮\)n - 2 và 2(n - 2) \(⋮\)n - 2

Nên 3 \(⋮\)n - 2

=> n - 2 \(\in\)Ư (3)

Ư (3) = {-1; -3; 1; 3}

=> n - 2 = -1 hay -3 hay 1 hay 3

     n      = -1 + 2 hay -3 + 2 hay 1 + 2 hay 3 + 2

     n      = 1 hay -1 hay 3 hay 5.

Vậy n \(\in\){1; -1; 3; 5}

4 tháng 5 2020

Để p/s là số nguyên <=>      n2+1  \(⋮\)n -2       1

Có (n-2) x (n+2)  \(⋮\)n -2  => n2 -4 \(⋮\)n-2         2

Lấy  - 2  có       5 \(⋮\)n-2    => n-2\(\in\)( 1 ; 5 ;-1 ; -5 )

                                             => n \(\in\)( 3 ; 7; 1 ;-3 )

17 tháng 3 2020

Để \(\frac{3n+1}{2n-3}\in Z\Leftrightarrow3n+1⋮2n-3\)

\(\Leftrightarrow2\left(3n+1\right)⋮2n-3\)

\(\Leftrightarrow6n-9+11⋮2n-3\)

Ta thấy \(6n-9⋮2n-3\forall n\)

\(\Rightarrow6n-9+11⋮2n-3\Leftrightarrow11⋮2n-3\)

\(\Leftrightarrow2n-3\inƯ\left(11\right)=\left\{1;-1;11;-11\right\}\)

\(\Leftrightarrow n\in\left\{2;1;7;-4\right\}\)

...

8 tháng 6 2020

\(\frac{4}{7}:\left(\frac{2}{5}.\frac{4}{7}\right)\)

\(=\frac{4}{7}:\frac{8}{35}\)

\(=\frac{4}{7}.\frac{35}{8}\)

\(=\frac{5}{2}\)

4/7:8/35

4/7×35/8

5/2