Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt phân số trên là A
\(A=\frac{25^{28}+25^{24}+...+25^4+25^0}{\left(25^{28}+25^{24}+...+25^4+25^0\right)+\left(25^{30}+25^{26}+...+25^6+25^2\right)}\)
\(\frac{1}{A}=\frac{\left(25^{28}+25^{24}+...+25^4+25^0\right)+\left(25^{30}+25^{26}+...+25^6+25^2\right)}{25^{28}+25^{24}+...+25^4+25^0}\)
\(\frac{1}{A}=1+\frac{25^{30}+25^{26}+...+25^6+25^2}{25^{28}+25^{24}+...+25^4+25^0}\)
Đặt \(B=\frac{25^{30}+25^{26}+...+25^6+25^2}{25^{28}+25^{24}+...+25^4+25^0}\)
\(\frac{B}{25^2}=\frac{25^{30}+25^{26}+...+25^6+25^2}{25^{30}+25^{26}+...+25^6+25^2}=1\Rightarrow B=25^2\)
=> \(\frac{1}{A}=1+B=1+25^2\Rightarrow A=\frac{1}{1+25^2}\)
a) Ta có: \(\dfrac{25^{28}+25^{24}+25^{20}+...+25^4+1}{25^{30}+25^{28}+...+25^2+1}\)
\(=\dfrac{25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+...+\left(25^4+1\right)}{25^{28}\left(25^2+1\right)+25^{24}\left(25^2+1\right)+...+\left(25^2+1\right)}\)
\(=\dfrac{\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}{\left(25^2+1\right)\left(25^{28}+25^{24}+...+1\right)}\)
\(=\dfrac{\left(25^4+1\right)\cdot\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}{\left(25^2+1\right)\left[25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+25^8\left(25^4+1\right)+\left(25^4+1\right)\right]}\)
\(=\dfrac{\left(25^4+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}\)
\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}\)
\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}\)
\(=\dfrac{1}{25^2+1}=\dfrac{1}{626}\)
kết bạn và gửi lời nhắn :
mình sẽ làm video hướng dẫn cho bạn
Lời giải:
Xét tử số:
$\text{TS}=1+25^4+25^8+...+25^{28}$
$25^4.\text{TS}=25^4+25^8+...+25^{32}$
$\Rightarrow \text{TS}(25^4-1)=25^{32}-1$
$\text{TS}=\frac{25^{32}-1}{25^4-1}$
Xét mẫu số:
$\text{MS}=1+25^2+..+25^{30}$
$25^2.\text{MS}=25^2+25^4+...+25^{32}$
$\Rightarrow \text{MS}(25^2-1)=25^{32}-1$
$\Rightarrow \text{MS}=\frac{25^{32}-1}{25^2-1}$
Do đó:
$A=\frac{25^{32}-1}{25^4-1}:\frac{25^{32}-1}{25^2-1}=\frac{25^2-1}{25^4-1}$
$=\frac{25^2-1}{(25^2-1)(25^2+1)}=\frac{1}{25^2+1}$