Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{x+2+2x+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{2-x}{x}\)
\(=\dfrac{4x}{\left(x+2\right)}\cdot\dfrac{-1}{x}=\dfrac{-4}{x+2}\)
b: 2x^2+x=0
=>x(2x+1)=0
=>x=0(loại) hoặc x=-1/2(nhận)
Khi x=-1/2 thì \(A=-4:\left(-\dfrac{1}{2}+2\right)=-4:\dfrac{3}{2}=-4\cdot\dfrac{2}{3}=-\dfrac{8}{3}\)
c: Để A=1/2 thì -4/x+2=1/2
=>x+2=-2
=>x=-4
Ta có: 8\(\left(x+\dfrac{1}{x}\right)^2\)+4\(\left(x^2+\dfrac{1}{x^2}\right)^2\)\(\left(x+\dfrac{1}{x}\right)^2\)=(x+4)2
ĐKXĐ: x khác 0
<=>8\(\left(x+\dfrac{1}{x}\right)^2\)+4\(\left(x^2+\dfrac{1}{x^2}\right)\)\(\left(x^2+\dfrac{1}{x^2}-x^2-2-\dfrac{1}{x^2}\right)\)=(x+4)2
<=>8\(\left(x+\dfrac{1}{x}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=\left(x+4\right)^2\)
<=>8\(\left(x^2+2+\dfrac{1}{x^2}-x^2-\dfrac{1}{x^2}\right)\)=(x+4)2
=>(x+4)2=16
Vậy có 2 TH:
+) x+4=4 => x=0(KTMĐKXĐ)
+)x+4=-4 => x=-8(TMĐKXĐ)
Vậy tập nghiệm của phương trình S={-8}
Bài 1:
\(D=-3x^2+x+15x-5-3\left(2x^2-5x+2\right)\)
\(=-3x^2+16x-5-6x^2+15x-6\)
\(=-9x^2+31x-11\)
\(=-9\cdot\dfrac{1}{9}+\dfrac{31}{3}-11\)
=-11-1+31/3=-12+31/3=-5/3
b: \(E=x^2+x-56-x^2+7x-10=8x-66\)
\(=-\dfrac{8}{5}-66=-\dfrac{338}{5}\)
c: \(F=-3\left(2x^2+x-16x-8\right)-\left(-3x^2+2x-15x+10\right)-4x^2+24x\)
\(=-6x^2+45x+24+3x^2+13x-10-4x^2+24x\)
\(=-4x^2+82x+14\)
\(=-4\cdot9-82\cdot3+14=-268\)
2: \(\Leftrightarrow\left(x-4\right)\left(x+1\right)+\left(x+4\right)\left(x-1\right)=2\left(x-1\right)\left(x+1\right)\)
=>x^2-3x-4+x^2+3x-4=2x^2-2
=>2x^2-8=2x^2-2(loại)
3: \(\Leftrightarrow\left(x^2-x\right)\left(x-3\right)+x^2\left(x+3\right)=-7x^2+3x\)
=>x^3-3x^2-x^2+3x+x^3+3x^2+7x^2-3x=0
=>2x^3+6x^2=0
=>2x^2(x+3)=0
=>x=0(nhận) hoặc x=-3(loại)
Mk xin lỗi nha, câu c sai đề
c) (x+6)4 + (x+8)4 = 272
a.
\(\left(2x-1\right)^3+6\left(3x-1\right)^3=2\left(x+1\right)^3+6\left(x+2\right)^3\)
\(\Leftrightarrow\left(2x\right)^3-3.\left(2x\right)^2.1+3.2x.1+1^3+6.\left[\left(3x\right)^3-3.\left(3x\right)^2.1+3.3x.1+1^3\right]=2\left(x^3+3x^2+3x+1\right)+6\left(x^2+3.x^2.2+3.x.2^2+2^3\right)\)
\(=\left(x-\dfrac{1}{2}\right)^2\cdot\left(x+\dfrac{1}{2}\right)^2\)
\(=\left(x^2-\dfrac{1}{4}\right)^2\)
\(=x^4-\dfrac{1}{2}x^2+\dfrac{1}{16}\)