K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

a)\(\eqalign{ & A\sin {x \over 5} = \sin {x \over 5}\cos {x \over 5}\cos {{2x} \over 5}\cos {{4x} \over 5}\cos {{8x} \over 5} \cr & = {1 \over 2}\sin {{2x} \over 5}\cos {{2x} \over 5}\cos {{4x} \over 5}\cos {{8x} \over 5} \cr & = {1 \over 4}\sin {{4x} \over 5}\cos {{4x} \over 5}\cos {{8x} \over 5} = {1 \over 8}\sin {{8x} \over 5}\cos {{8x} \over 5} \cr & = {1 \over {16}}\sin {{16x} \over 5} \cr} \)

Suy ra biểu thức rút gọn \(A =\sin{{16x} \over 5}:16\sin {x \over 5}\)

b)\(\eqalign{ & B = \sin {x \over 7} + 2\sin {{3x} \over 7} + \sin {{5x} \over 7} = 2\sin {{3x} \over 7} + (\sin {x \over 7} + \sin {{5x} \over 7}) \cr & = 2\sin {{3x} \over 7} + 2\sin {1 \over 2}({{5x} \over 7} + {x \over 7})cos{1 \over 2}({{5x} \over 7} - {x \over 7}) \cr & = 2\sin {{3x} \over 7}(1 + \cos {{2x} \over 7}) = 4\sin {{3x} \over 7}{\cos ^2}{x \over 7} \cr}\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

2.

\(\text{VP}=\frac{1}{32}(2+\cos 2x-2\cos 4x-\cos 6x)\)

\(=\frac{1}{32}[2+\cos 2x-2(2\cos ^22x-1)-(4\cos ^32x-3\cos 2x)]\)

\(=\frac{1}{8}(-\cos ^32x-\cos ^22x+\cos 2x+1)=\frac{1}{8}(\cos 2x+1)(1-\cos ^22x)=\frac{1}{8}(\cos 2x+1)\sin ^22x\) (1)

\(\text{VT}=\sin ^2x\cos ^4x=\frac{1}{8}.(2\sin x\cos x)^2.2\cos ^2x=\frac{1}{8}\sin ^22x.(\cos 2x+1)(2)\)

Từ $(1);(2)$ ta có đpcm.

 

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

1.

\(\sin ^8x-\cos ^8x=(\sin ^4x+\cos ^4x)(\sin ^4x-\cos ^4x)\)

\(=[(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x](\sin ^2x+\cos ^2x)(\sin ^2x-\cos ^2x)\)

\(=(1-2\sin ^2x\cos ^2x)(\sin ^2x-\cos ^2x)\)

\(=(1-\frac{\sin ^22x}{2})(-\cos 2x)=-\frac{(2-\sin ^22x)\cos 2x}{2}=-\frac{(1+\cos ^22x)\cos 2x}{2}\) (1)

\(-(\frac{7}{8}\cos 2x+\frac{1}{8}\cos 6x)=\frac{-7}{8}\cos 2x-\frac{1}{8}(4\cos ^32x-3\cos 2x)=-\frac{\cos 2x+\cos ^32x}{2}\)

\(=\frac{-\cos 2x(\cos ^22x+1)}{2}\) (2)

Từ $(1);(2)$ ta có đpcm.

17 tháng 4 2017

a) \(\dfrac{\sin2\text{a}+\cos a}{1+\cos2\text{a}+\cos a}=2\tan a\)

9 tháng 5 2017

a) \(\dfrac{sin2\alpha+sin\alpha}{1+cos2\alpha+cos\alpha}=\dfrac{2sin\alpha cos\alpha+sin\alpha}{2cos^2\alpha+cos\alpha}\)\(=\dfrac{sin\alpha\left(2cos\alpha+1\right)}{cos\alpha\left(2cos\alpha+1\right)}=\dfrac{sin\alpha}{cos\alpha}=tan\alpha\).

AH
Akai Haruma
Giáo viên
25 tháng 4 2018

Câu a)

Từ \(\tan a=3\Leftrightarrow \frac{\sin a}{\cos a}=3\Rightarrow \sin a=3\cos a\)

Do đó:

\(\frac{\sin a\cos a+\cos ^2a}{2\sin ^2a-\cos ^2a}=\frac{3\cos a\cos a+\cos ^2a}{2(3\cos a)^2-\cos ^2a}\)

\(=\frac{\cos ^2a(3+1)}{\cos ^2a(18-1)}=\frac{4}{17}\)

Câu b)

Có: \(\cot \left(\frac{\pi}{2}-x\right)=\tan x=\frac{\sin x}{\cos x}\)

\(\cos\left(\frac{\pi}{2}+x\right)=-\sin x\)

\(\Rightarrow \cot \left(\frac{\pi}{2}-x\right)\cos \left(\frac{\pi}{2}+x\right)=\frac{-\sin ^2x}{\cos x}\)

Và:

\(\frac{\sin (\pi-x)\cot x}{1-\sin ^2x}=\frac{\sin x\cot x}{\cos^2x}=\frac{\sin x.\frac{\cos x}{\sin x}}{\cos^2x}=\frac{1}{\cos x}\)

Do đó:

\(\Rightarrow \cot \left(\frac{\pi}{2}-x\right)\cos \left(\frac{\pi}{2}+x\right)+\frac{\sin (\pi-x)\cot x}{1-\sin ^2x}=\frac{1-\sin ^2x}{\cos x}=\frac{\cos ^2x}{\cos x}=\cos x\)

Ta có đpcm.

20 tháng 5 2021

a, \(\dfrac{1+cosx+cos2x+cos3x}{2cos^2x+cosx-1}\)

\(=\dfrac{1+cos2x+cosx+cos3x}{2cos^2x+cosx-1}\)

\(=\dfrac{2cos^2x+2cos2x.cosx}{cos2x+cosx}\)

\(=\dfrac{2cosx\left(cos2x+cosx\right)}{cos2x+cosx}=2cosx\)

20 tháng 5 2021

b) \(cos\dfrac{5x}{2}.cos\dfrac{3x}{2}+sin\dfrac{7x}{2}.sin\dfrac{x}{2}\)

\(=cos\dfrac{4x+x}{2}.cos\dfrac{4x-x}{2}+sin\dfrac{4x+3x}{2}.sin\dfrac{4x-3x}{2}\)

\(=\dfrac{1}{2}\left(cos4x+cosx\right)-\dfrac{1}{2}\left(cos4x-cos3x\right)\)

\(=\dfrac{1}{2}\left(cosx+cos3x\right)=\dfrac{1}{2}.2cos2x.cos\left(-x\right)\)\(=cosx.cos2x\)

 

26 tháng 4 2017

Giải bài 3 trang 154 SGK Đại Số 10 | Giải toán lớp 10

23 tháng 3 2018

rút gọn biểu thức:

E=cos(\(\dfrac{3\pi}{3}-\alpha\))-sin(\(\dfrac{3\pi}{2}-\alpha\))+sin(\(\alpha+4\pi\))

6 tháng 4 2017

1) \(\dfrac{1-cosx+cos2x}{sin2x-sinx}=cotx\)

\(VT=\dfrac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}\)

\(VT=\dfrac{cosx\left(2cos-1\right)}{sinx\left(2cosx-1\right)}\)

\(VT=\dfrac{cosx}{sinx}=cotx=VP\) ( đpcm )

b) \(\dfrac{sinx+sin\dfrac{x}{2}}{1+cosx+cos\dfrac{x}{2}}=tan\dfrac{x}{2}\)

\(VT=\dfrac{sin\left(2.\dfrac{x}{2}\right)+sin\dfrac{x}{2}}{1+cos\left(2.\dfrac{x}{2}\right)+cos\dfrac{x}{2}}\)

\(VT=\dfrac{2sin\dfrac{x}{2}.cos\dfrac{x}{2}+sin\dfrac{x}{2}}{1+2cos^2\dfrac{x}{2}-1+cos\dfrac{x}{2}}\)

\(VT=\dfrac{2sin\dfrac{x}{2}.cos\dfrac{x}{2}+sin\dfrac{x}{2}}{2cos^2\dfrac{x}{2}+cos\dfrac{x}{2}}\)

\(VT=\dfrac{sin\dfrac{x}{2}\left(2cos\dfrac{x}{2}+1\right)}{cos\dfrac{x}{2}\left(2cos\dfrac{x}{2}+1\right)}\)

\(VT=\dfrac{sin\dfrac{x}{2}}{cos\dfrac{x}{2}}=tan\dfrac{x}{2}=VP\) ( đpcm )

c) \(\dfrac{2cos2x-sin4x}{2cos2x+sin4x}=tan^2\left(\dfrac{\pi}{4}-x\right)\)

\(VT=\dfrac{2cos2x-sin\left(2.2x\right)}{2cos2x+sin\left(2.2x\right)}\)

\(VT=\dfrac{2cos2x-2sin2x.cos2x}{2cos2x+2sin2x.cos2x}\)

\(VT=\dfrac{2cos2x\left(1-sin2x\right)}{2cos2x\left(1+sin2x\right)}\)

\(VT=\dfrac{1-sin2x}{1+sin2x}\)

\(VP=tan^2\left(\dfrac{\pi}{4}-x\right)=\dfrac{1-cos2\left(\dfrac{\pi}{4}-x\right)}{1+cos2\left(\dfrac{\pi}{4}-x\right)}\)

\(VP=\dfrac{1-cos\left(\dfrac{\pi}{2}-2x\right)}{1+cos\left(\dfrac{\pi}{2}-2x\right)}\)

\(VP=\dfrac{1-sin2x}{1+cos2x}=VT\) ( đpcm )

d) \(tanx-tany=\dfrac{sin\left(x-y\right)}{cosx.cosy}\)

\(VP=\dfrac{sin\left(x-y\right)}{cosx.cosy}=\dfrac{sinx.cosy-cosx.siny}{cosx.cosy}\)

\(VP=\dfrac{sinx.cosy}{cosx.cosy}-\dfrac{cosx.siny}{cosx.cosy}\)

\(VP=\dfrac{sinx}{cosx}-\dfrac{siny}{cosy}=tanx-tany=VT\) ( đpcm )