Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (7x - 8)(7x + 8) - 10(2x + 3)2 + 5x(3x - 2)2 - 4x(x - 5)2
= 49x2 - 64 - 10(4x2 + 12x + 9) + 5x(9x2 - 12x + 4) - 4x(x2 - 10x + 25)
= 49x2 - 64 - 40x2 - 120x - 90 + 45x3 - 60x2 + 20x - 4x3 + 40x - 100x
= 41x3 - 51x2 - 160x - 154
b) (x2 - 3)(x2 + 3) - 5x2(x + 1)2 - (x2 - 3x)(x2 - 2x) + 4x(x + 2)2
= x4 - 9 - 5x2(x2 + 2x + 1) - x4 + 5x3 - 6x2 + 4x(x2 + 4x + 4)
= 5x3 - 6x2 - 5x4 - 10x3 - 5x2 + 4x3 + 16x2 + 16x - 9
= -5x4 - x3 + 5x2 + 16x - 9
Trả lời:
a , ( 7x - 8 ) ( 7x + 8 ) - 10 ( 2x + 3 )2 + 5x ( 3x - 2 )2 - 4x ( x - 5 )2
= 49x2 - 64 - 10 ( 4x2 + 12x + 9 ) + 5x ( 9x2 - 12x + 4 ) - 4x ( x2 - 10x + 25 )
= 49x2 - 64 - 40x2 + 120x - 90 + 45x3 - 60x2 + 20x - 4x3 + 40x2 - 100x
= 41x3 - 11x2 + 40x - 154
b , ( x2 - 3 ) ( x2 + 3 ) - 5x2 ( x + 1 )2 - ( x2 - 3x ) ( x2 - 2x ) + 4x ( x + 2 )2
= x4 - 9 - 5x2 ( x2 + 2x + 1 ) - ( x4 - 2x3 - 3x3 + 6x2 ) + 4x ( x2 + 4x + 4 )
= x4 - 9 - 5x4 - 10x3 - 5x2 - x4 + 2x3 + 3x3 - 6x2 + 4x3 + 16x2 + 16x
= - 5x4 - x3 + 5x2 + 16x - 9
a) x (x+1) (x-1) - (x-1) (x2+x+1)= x3 - x2 + x2 - x - x3 + 13
= 1- x
Rút gọn biểu thức
a).x(2x2-3)-x2(5x+1)+x2
b).3x(x-2)-5x(1-x)-8(x2-3)
c).1/2x2(6x-3)-x(x2+1/2)+1/2(x+4)
a) x(2x^2 -3) -x^2 (5x+1 ) + x^2
<=> 2x^3 -3x -5x^3 -x^2 +x^2
<=>3x^3 -3x
b) 3x(x-2) -5x(1-x)-8(x^2 -3)
=3x^2 -6x -5x +5x^2 -8x^2 +24
= -11x+24
\(A=\left(\frac{5x+2}{x^2-10x}+\frac{5x-2}{x^2+10x}\right).\frac{x^2-100}{x^2+4}\)
\(=\left(\frac{\left(5x+2\right)\left(x+10\right)+\left(5x-2\right)\left(x-10\right)}{x\left(x^2-100\right)}\right).\frac{x^2-100}{x^2+4}\)
\(=\frac{10\left(x^2+4\right)}{x\left(x^2-100\right)}.\frac{x^2-100}{x^2+4}=\frac{10}{x}\)
Với \(x=20040\)
\(\Rightarrow A=\frac{10}{20040}=\frac{1}{2004}\)
Rút gọn các phân thức:
a) \(\frac{\left(3x+2\right)^2-\left(x+2\right)^2}{x^3-x^2}=\frac{9x^2+12x+4-x^2-4x-4}{x^3-x^2}=\frac{8x^2+8x}{x^3-x^2}=\frac{8x\left(x+1\right)}{x^2\left(x-1\right)}=\frac{8\left(x+1\right)}{x-1}\)
b) \(\frac{x^4-1}{x^3+2x^2-x-2}=\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x^3-x\right)+\left(2x^2-2\right)}=\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x+2\right)\left(x^2-1\right)}=\frac{x^2+1}{x+2}\)
c) \(\frac{x^2+7x+12}{x^2+5x+6}=\frac{\left(x^2+3x\right)+\left(4x+12\right)}{\left(x^2+3x\right)+\left(2x+6\right)}=\frac{\left(x+3\right)\left(x+4\right)}{\left(x++3\right)\left(x+2\right)}=\frac{x+4}{x+2}\)
d) \(\frac{x^{10}-x^8+x^6-x^4+x^2-1}{x^4-1}=\frac{\left(x^{10}-x^8\right)+\left(x^6-x^4\right)+\left(x^2-1\right)}{\left(x^2-1\right)\left(x^2+1\right)}=\frac{\left(x^2-1\right)\left(x^8+x^4+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}=\frac{x^8+x^4+1}{x^2+1}\)