K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2018

a) \(\sqrt{\dfrac{x}{y^3}+\dfrac{2x}{y^4}}=\sqrt{\dfrac{xy}{y^4}+\dfrac{2x}{y^4}}=\sqrt{\dfrac{xy+2x}{y^4}}=\dfrac{\sqrt{xy+2x}}{\sqrt{y^4}}=\dfrac{\sqrt{xy+2x}}{\left|y^2\right|}=\dfrac{\sqrt{xy+2x}}{y^2}\)(vì y2\(\ge0\))

b) \(\dfrac{x-\sqrt{xy}}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{x}.\sqrt{x}-\sqrt{x}.\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{x}\)

c) \(\left(a-b\right)\sqrt{\dfrac{a^2b^2}{\left(a-b\right)^2}}=\left(a-b\right)\dfrac{\sqrt{\left(ab\right)^2}}{\sqrt{\left(a-b\right)^2}}=\left(a-b\right)\dfrac{\left|ab\right|}{\left|a-b\right|}\)

Nếu a-b>0 thì \(\left(a-b\right)\dfrac{\left|ab\right|}{\left|a-b\right|}=\left(a-b\right)\dfrac{\left|ab\right|}{a-b}=\left|ab\right|\)

Nếu a-b<0 thì \(\left(a-b\right)\dfrac{\left|ab\right|}{\left|a-b\right|}=\left(a-b\right)\dfrac{\left|ab\right|}{-\left(a-b\right)}=-\left|ab\right|\)

d) \(\dfrac{a-3\sqrt{a}+3}{a\sqrt{a}+3\sqrt{3}}=\dfrac{a-3\sqrt{a}+3}{\left(\sqrt{a}\right)^3+\left(\sqrt{3}\right)^3}=\dfrac{a-3\sqrt{a}+3}{\left(\sqrt{a}+\sqrt{3}\right)\left(a-3\sqrt{a}+3\right)}=\dfrac{1}{\sqrt{a}+\sqrt{3}}\)

Nếu trục căn thức ở mẫu thì \(\dfrac{1}{\sqrt{a}+\sqrt{3}}=\dfrac{\sqrt{a}-\sqrt{3}}{\left(\sqrt{a}+\sqrt{3}\right)\left(\sqrt{a}-\sqrt{3}\right)}=\dfrac{\sqrt{a}-\sqrt{3}}{a-3}\)

24 tháng 9 2018

b)\(\left(a-b\right)\sqrt{\dfrac{a^2b^2}{\left(a-b\right)^2}}=\left(a-b\right).\dfrac{ab}{a-b}=ab\)

18 tháng 9 2018

@Nhã Doanh

18 tháng 9 2018

giúp mk vs

a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)

b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)

\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)

c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)

\(=\sqrt{x}+2-\sqrt{x}-2=0\)

19 tháng 9 2018

a) Sai đề.

\(\dfrac{a+b}{b^2}\sqrt[]{\dfrac{a^2b^4}{a^2+2ab+b^2}}=\dfrac{a+b}{b^2}.\dfrac{b^2\left|a\right|}{\left|a+b\right|}=\left|a\right|\)

19 tháng 9 2018

b) Sai đề.

\(\dfrac{a\sqrt[]{b}+b\sqrt[]{a}}{\sqrt[]{ab}}:\dfrac{1}{\sqrt[]{a}-\sqrt[]{b}}=\dfrac{\sqrt[]{ab}\left(\sqrt[]{a}+\sqrt[]{b}\right)}{\sqrt[]{ab}}.\left(\sqrt[]{a}-\sqrt[]{b}\right)=a-b\)

20 tháng 6 2017

a, \(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\dfrac{\sqrt{3}.\sqrt{5}-\sqrt{3}.\sqrt{2}}{\sqrt{5}.\sqrt{7}-\sqrt{7}.\sqrt{2}}\)

\(=\dfrac{\sqrt{3}.\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}.\left(\sqrt{5}-\sqrt{2}\right)}=\dfrac{\sqrt{3}}{\sqrt{7}}\)

b, \(\dfrac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)

\(=\dfrac{2.\sqrt{5}.\sqrt{3}-2.\sqrt{2}.\sqrt{5}-\sqrt{3}.\sqrt{3}+\sqrt{2}.\sqrt{3}}{2.\sqrt{5}-2.\sqrt{2}.\sqrt{5}-\sqrt{3}+\sqrt{2}.\sqrt{3}}\)

\(=\dfrac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{3}.\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{5}.\left(1-\sqrt{2}\right)-\sqrt{3}.\left(1-\sqrt{2}\right)}\)

\(=\dfrac{\left(2\sqrt{5}+\sqrt{3}\right).\left(\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{5}-\sqrt{3}\right).\left(1-\sqrt{2}\right)}=\dfrac{\sqrt{3}-\sqrt{2}}{1-\sqrt{2}}\)

c, \(\dfrac{x+\sqrt{xy}}{y+\sqrt{xy}}=\dfrac{\sqrt{x}.\sqrt{x}+\sqrt{x}.\sqrt{y}}{\sqrt{y}.\sqrt{y}+\sqrt{x}.\sqrt{y}}\)

\(=\dfrac{\sqrt{x}.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}.\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}}{\sqrt{y}}\)

Chúc bạn học tốt!!!

20 tháng 6 2017

d) \(\dfrac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\) = \(-\dfrac{\sqrt{a}\left(1+\sqrt{ab}\right)-\sqrt{b}\left(1+\sqrt{ab}\right)}{1-ab}\)

= \(-\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(1+\sqrt{ab}\right)}{\left(1+\sqrt{ab}\right)\left(1-\sqrt{ab}\right)}\) = \(-\dfrac{\sqrt{a}-\sqrt{b}}{1-\sqrt{ab}}\) = \(\dfrac{\sqrt{b}-\sqrt{a}}{1-\sqrt{ab}}\)

13 tháng 7 2018

b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)

\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)

\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)

\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)

\(VT=0=VP\)

1. Khẳng định nào sau đây là đúng? a, \(3\sqrt{5}=\sqrt{30}\) ; b, \(-3\sqrt{5}=-\sqrt{30}\) ; c, \(-3\sqrt{5}=-\sqrt{45}\) ; d, \(-3\sqrt{5}=\sqrt{45}\); 2. Khẳng định nào sau đây là sai? a, \(\sqrt{\left(-3\right)^2}.5=-3\sqrt{5}\) b, \(\sqrt{3^2.5}=3\sqrt{5}\) c, \(\sqrt{9x^2}=-3x\) với x≤0 c, \(\sqrt{\left(x-3\right)^2}=3-x\) với...
Đọc tiếp

1. Khẳng định nào sau đây là đúng?

a, \(3\sqrt{5}=\sqrt{30}\) ; b, \(-3\sqrt{5}=-\sqrt{30}\) ; c, \(-3\sqrt{5}=-\sqrt{45}\) ; d, \(-3\sqrt{5}=\sqrt{45}\);

2. Khẳng định nào sau đây là sai?

a, \(\sqrt{\left(-3\right)^2}.5=-3\sqrt{5}\) b, \(\sqrt{3^2.5}=3\sqrt{5}\)

c, \(\sqrt{9x^2}=-3x\) với x≤0 c, \(\sqrt{\left(x-3\right)^2}=3-x\) với x≤3

3. Khoanh vào chữ đặt trước câu trả lời đúng:

Giá trị của biểu thức \(\dfrac{1}{\sqrt{3}+\sqrt{2}}\) \(\dfrac{1}{\sqrt{3}-\sqrt{2}}\) bằng:

a, 0 ; b, 4 ; c, 2\(\sqrt{2}\) ; d, \(-2\sqrt{2}\)

4. Khoanh vào chữ đặt trước câu trả lời đúng:

Trục căn thức ở mẫu của \(\dfrac{\sqrt{17}}{4+\sqrt{17}}\) ta được:

a, 4 ; b, \(\dfrac{1}{4}\) ; c, \(\sqrt{17}\left(4-\sqrt{17}\right)\) ; d, \(\sqrt{17}\left(\sqrt{17}-4\right)\)

5. Rút gọn các biểu thức (giả sử các biểu thức đều có nghĩa);

a, \(\sqrt{\dfrac{x}{y^3}+\dfrac{2x}{y^4}}\) ; b, \(\dfrac{x-\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\)

c, \(\left(a-b\right)\sqrt{\dfrac{a^2b^2}{\left(a-b\right)^2}}\) ; c, \(\dfrac{a-\sqrt{3a}+3}{a\sqrt{a}+3\sqrt{3}}\)

2
18 tháng 9 2018

1-c

2-a

3-d

4-d

chúc bn học tốt

18 tháng 9 2018

bài 5 thì mk ko bt.khocroi xin lỗi nha

12 tháng 10 2022

a: \(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{x-1}=\dfrac{-2\left(\sqrt{x}-1\right)}{x-1}=\dfrac{-2}{\sqrt{x}+1}\)

b: \(=\dfrac{\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}+\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}}{1-xy}:\left(\dfrac{x+y+2xy+1-xy}{1-xy}\right)\)

\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\cdot\dfrac{1-xy}{x+y+xy+1}\)

\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)

c: \(=\dfrac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)