K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2018

\(\sqrt{\frac{3\sqrt{5}+1}{2\sqrt{5}-3}}\left(\sqrt{10}-\sqrt{2}\right)\)

\(=\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3+\sqrt{5}}\)

?? :v

27 tháng 12 2018

\(\sqrt{\frac{3\sqrt{5}+1}{2\sqrt{5}-3}}\left(\sqrt{10}-\sqrt{2}\right)\)

\(=\sqrt{\frac{\left(3\sqrt{5}+1\right)\left(2\sqrt{5}+3\right)}{\left(2\sqrt{5}-3\right)\left(2\sqrt{5}+3\right)}}.\left(\sqrt{10}-\sqrt{2}\right)\)

\(=\sqrt{3+\sqrt{5}}.\sqrt{2}.\left(\sqrt{5}-1\right)\)

\(=\sqrt{6+2\sqrt{5}}.\left(\sqrt{5}-1\right)\)

\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)=4\)

4 tháng 8 2017

\(=\sqrt{3-\sqrt{5}}.\sqrt{2}.\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)

\(=\sqrt{6-2\sqrt{5}}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)

\(=\sqrt{\left(\sqrt{5}-1\right)^2}\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)

\(=\left(\sqrt{5}-1\right)\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\)

\(=\left(\sqrt{5}-1\right)^2\left(3+\sqrt{5}\right)\)

\(=\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)\)

\(=2\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\)

\(=2\left(9-\left(\sqrt{5}\right)^2\right)\)

\(=2.4=8\)

Chỉ vậy thôi nha bạn ^_^

4 tháng 8 2017

\(C=\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}.\sqrt{3+\sqrt{5}.}\sqrt{2}\left(\sqrt{5}-1\right)\)

\(C=\sqrt{4}.\sqrt{6+2\sqrt{5}}\left(\sqrt{5}-1\right)\)

\(C=2.\sqrt{\left(\sqrt{5}+1\right)^2}.\left(\sqrt{5}-1\right)\)

\(C=2.\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)=2.4=8\)

20 tháng 7 2015

1 a/ Trục căn thức ở mẫu

\(VT=\frac{-\sqrt{1}+\sqrt{2}}{2-1}+\frac{-\sqrt{2}+\sqrt{3}}{3-2}+...+\frac{-\sqrt{47}+\sqrt{48}}{48-47}\)\(=-\sqrt{1}+\sqrt{2}-\sqrt{2}+\sqrt{3}-....-\sqrt{47}+\sqrt{48}=\sqrt{48}-1>3=VP\)

b/

\(2\left(10+3\sqrt{11}\right)=11+2.\sqrt{11}.3+9=\left(\sqrt{11}+3\right)^2\)

\(VT=\left(\sqrt{11}-3\right)\sqrt{2}\sqrt{10+3\sqrt{11}}=\left(\sqrt{11}-3\right)\left(\sqrt{11}+3\right)=11-9=2=VP\)

 

20 tháng 7 2015

2/

\(B=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{2\left(5+\sqrt{3}.\sqrt{7}\right)}\)

\(2\left(5+\sqrt{21}\right)=7+2\sqrt{7}.\sqrt{3}+3=\left(\sqrt{7}+\sqrt{3}\right)^2\)

\(B=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)=\left(5+\sqrt{21}\right).4\)

\(=20+4\sqrt{21}\)

A chắc không rút gọn được.

15 tháng 7 2017

a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}=\sqrt{16}-6+\sqrt{20}-\sqrt{5}=4-6+2\sqrt{5}-\sqrt{5}=\sqrt{5}-2\)

b) \(0,2\sqrt{\left(-10\right)^3.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}=0,2\left|-10\right|\sqrt{3}+2\left|\sqrt{3}-\sqrt{5}\right|=0,2.10.\sqrt{3}+2\left(\sqrt{5}-\sqrt{3}\right)=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}=2\sqrt{5}\)

c) \(\left(\dfrac{1}{2}\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}=\left(\dfrac{1}{2}\sqrt{\dfrac{2}{4}}-\dfrac{3}{2}\sqrt{2}+8\sqrt{2}\right):\dfrac{1}{8}=\left(\dfrac{1}{4}\sqrt{2}-\dfrac{2}{3}\sqrt{2}+8\sqrt{2}\right):\dfrac{1}{8}=\dfrac{27}{4}\sqrt{2}.8=54\sqrt{2}\)

d) \(2\sqrt{\left(\sqrt{2}-3\right)^2}+\sqrt{2.\left(-3\right)^2}-5\sqrt{\left(-1\right)^4}=2\left(3-\sqrt{2}\right)+3\sqrt{2}-5=6-2\sqrt{2}+3\sqrt{2}-5=1+\sqrt{2}\)