Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+x+1}{x+1}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{x+1+x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{2x+1}{x-1}\cdot\dfrac{x+1}{2x+1}=\dfrac{x+1}{x-1}\)
b: Thay x=1/2 vào A, ta được:
\(A=\dfrac{\dfrac{1}{2}+1}{\dfrac{1}{2}-1}=\dfrac{3}{2}:\dfrac{-1}{2}=-3\)
c: Để A là số nguyên thì \(x-1+2⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)
\(\Leftrightarrow x\in\left\{2;0;3\right\}\)
ĐK của A \(x\ne4\),ĐK của B \(\hept{\begin{cases}x\ne0\\x\ne5\end{cases}}\)
a, \(x^2-3x=0\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Với \(x=0\Rightarrow A=\frac{-5}{-4}=\frac{5}{4}\)
Với \(x=3\Rightarrow A=\frac{3-5}{3-4}=2\)
b. \(B=\frac{x+5}{2x}+\frac{x-6}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}=\frac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\frac{x^2-10x+25}{2x\left(x-5\right)}=\frac{\left(x-5\right)^2}{2x\left(x-5\right)}=\frac{x-5}{2x}\)
c. \(P=\frac{A}{B}=\frac{x-5}{x-4}.\frac{2x}{x-5}=\frac{2x}{x-4}=\frac{2x-8}{x-4}+\frac{8}{x-4}=2+\frac{8}{x-4}\)
P nguyên \(\Leftrightarrow x-4\inƯ\left(8\right)\Rightarrow x-4\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow x\in\left\{-4;0;2;3;5;6;8;12\right\}\)
So sánh điều kiện ta thấy \(x\in\left\{-4;2;3;6;8;12\right\}\)thì P nguyên
sau khi rút gọn ta được \(P=\frac{x-4}{x-2}\left(x\ne-3;x\ne2;x\ne-2\right)\)
d,ta có \(P=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\left(x\ne-2;x\ne-3;x\ne2\right)\)
để P nguyên mà x nguyên \(\Leftrightarrow x-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
ta có bảng:
x-2 | 1 | -1 | 2 | -2 |
x | 3(tm) | 1(tm) | 4(tm) | 0(tm) |
vậy \(P\in Z\Leftrightarrow x\in\left\{3;1;4;0\right\}\)
e,x2-9=0
\(\Leftrightarrow x^2=9\Leftrightarrow\orbr{\begin{cases}x=3\left(tm\right)\\x=-3\left(kotm\right)\end{cases}}\)
thay x=3 vào P đã rút gọn ta có \(P=\frac{3-4}{3-2}=-1\)
vậy với x=3 thì p có giá trị bằng -1
Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy
Bài 4:
\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
a) DK x khác +-1
b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)
c) x+1 phải thuộc Ước của 2=> x=(-3,-2,0))
1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa
b) \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x-2}{x+2}\)
c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)
\(\Leftrightarrow x-2=\left(x+2\right).0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )
=> ko có gía trị nào của x để A=0
Mẫu cho 1 câu
\(B=5-\left|x-3\right|\)
ĐK: \(x>4\Leftrightarrow x-3>0\)
Ta có: \(\left|x-3\right|=x-3\)
\(\Rightarrow B=5-x-3=-x+2\)
+ Nếu \(x-3< 0\Leftrightarrow x< 3\)
Ta có: \(\left|x-3\right|=-\left(x-3\right)=-x+3\)
easy rồi tự thế vô tính tiếp
cảm ơn bạn nha