Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài `1`
\(\sqrt{4-2\sqrt{3}}-\dfrac{2}{\sqrt{3}+1}+\dfrac{\sqrt{3}-3}{\sqrt{3}-1}\\ =\sqrt{3-2\sqrt{3}+1}-\dfrac{2\left(\sqrt{3}-1\right)}{3-1}-\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\\ =\sqrt{\left(\sqrt{3}\right)^2-2\cdot\sqrt{3}\cdot1+1^2}-\dfrac{2\left(\sqrt{3}-1\right)}{2}-\sqrt{3}\\ =\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}+1-\sqrt{3}\\ =\sqrt{3}-1-\sqrt{3}+1-\sqrt{3}\\ =-\sqrt{3}\)
2:
a: \(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{x-9}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)+2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x+5\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}+8\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)
b: B=5
=>\(5\left(\sqrt{x}+3\right)=\sqrt{x}+8\)
=>\(5\sqrt{x}+15=\sqrt{x}+8\)
=>\(4\sqrt{x}=-7\)(loại)
Vậy: \(x\in\varnothing\)
1) \(A=3\sqrt{\dfrac{1}{3}}-\dfrac{5}{2}\sqrt{12}-\sqrt{48}\)
\(=3\cdot\dfrac{\sqrt{1}}{\sqrt{3}}-\dfrac{5\sqrt{12}}{2}-\sqrt{4^2\cdot3}\)
\(=\dfrac{3\cdot1}{\sqrt{3}}-\dfrac{5\cdot2\sqrt{3}}{2}-4\sqrt{3}\)
\(=\sqrt{3}-5\sqrt{3}-4\sqrt{3}\)
\(=-8\sqrt{3}\)
2) \(A=\sqrt{12-4x}\) có nghĩa khi:
\(12-4x\ge0\)
\(\Leftrightarrow4x\le12\)
\(\Leftrightarrow x\le\dfrac{12}{4}\)
\(\Leftrightarrow x\le3\)
3) \(\dfrac{2x-2\sqrt{x}}{x-1}\)
\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}\right)^2-1^2}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2\sqrt{\text{x}}}{\sqrt{x}+1}\)
a: \(B=\dfrac{2x+3\sqrt{x}+9-x+3\sqrt{x}}{x-9}=\dfrac{x+9}{x-9}\)
b: \P=A:B
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}\cdot\dfrac{x-9}{x+9}=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{x+9}>=\dfrac{-1\cdot3}{9}=\dfrac{-1}{3}\)
Dấu = xảy ra khi x=0
Lời giải:
a.
\(B=\frac{2\sqrt{x}(\sqrt{x}-3)+\sqrt{x}(\sqrt{x}+3)-2x}{(\sqrt{x}+3)(\sqrt{x}-3)}=\frac{x-3\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{\sqrt{x}(\sqrt{x}-3)}{(\sqrt{x}+3)(\sqrt{x}-3)}=\frac{\sqrt{x}}{\sqrt{x}+3}\)
b.
\(P=AB=\frac{\sqrt{x}-2}{\sqrt{x}}.\frac{\sqrt{x}}{\sqrt{x}+3}=\frac{\sqrt{x}-2}{\sqrt{x}+3}\)
Để $P<0\Leftrightarrow \frac{\sqrt{x}-2}{\sqrt{x}+3}<0$
Mà $\sqrt{x}+3>0$ nên $\sqrt{x}-2<0$
$\Leftrightarrow 0< x< 4$
Kết hợp với ĐKXĐ suy ra $0< x< 4$
Mà $x$ nguyên nên $x\in left\{1; 2; 3\right\}$
\(a.x+3+\sqrt{x^2-6x+9}=x+3+\text{ |}x-3\text{ |}=x+3+3-x=6\) \(b.\sqrt{x^2+4x+4}-\sqrt{x^2}=\text{ |}x+2\text{ |}-\text{ |}x\text{ |}=x+2-\left(-x\right)=x+2+x=2x+2\) \(c.\dfrac{\sqrt{x^2-2x+1}}{x-1}=\dfrac{x-1}{x-1}=1\)
\(d.\text{ |}x-2\text{ |}+\dfrac{\sqrt{x^2-4x+4}}{x-2}=\text{ |}x-2\text{ |}+\dfrac{\text{ |}x-2\text{ |}}{x-2}=2-x+\dfrac{-\left(x-2\right)}{x-2}=2-x-1=1-x\)
Với x > 0 ; x \(\ne\)9
a, \(B=\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}+\frac{2}{\sqrt{x}}\right)\)
\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)-x-9}{x-9}\right):\left(\frac{3\sqrt{x}+1+2\left(\sqrt{x}-3\right)}{x-3\sqrt{x}}\right)\)
\(=\left(\frac{-3\sqrt{x}-9}{x-9}\right):\left(\frac{5\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)=\frac{-3}{\sqrt{x}-3}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{5\left(\sqrt{x}-1\right)}=\frac{-3\sqrt{x}}{5\left(\sqrt{x}-1\right)}\)
b, Ta có : \(B< 0\Rightarrow\frac{-3\sqrt{x}}{5\left(\sqrt{x}-1\right)}< 0\Rightarrow\sqrt{x}-1>0\Leftrightarrow x>1\)
Kết hợp vói đk vậy x > 1 ; x \(\ne\)9
1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)
Thay \(x=\frac{1}{9}\) vào A ta có:
\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)
2. \(B=...\)
\(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{\sqrt{x}+3}{-6}\)
Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)
hay \(P\le-\frac{1}{2}\)
Dấu "=" xảy ra <=> x=0
b) ĐKXĐ : \(x\ne\pm1\)
\(P=\dfrac{x}{x-1}+\dfrac{3}{x+1}-\dfrac{6x-4}{x^2-1}\)
\(=\dfrac{x\left(x+1\right)+3\left(x-1\right)-\left(6x-4\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2-2x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{x+1}\)
c) ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
\(A=\dfrac{1}{x+\sqrt{x}}+\dfrac{2\sqrt{x}}{x-1}-\dfrac{1}{x-\sqrt{x}}\)
\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1+2x-\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2\left(x-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{2}{\sqrt{x}}\)
a) ĐKXĐ : \(x\ge0;x\ne16\)
\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}+4}+\dfrac{4}{\sqrt{x-4}}\right):\dfrac{x+16}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-4\right)+4\left(\sqrt{x}+4\right)}{x-16}:\dfrac{x+16}{\sqrt{x}+2}\)
\(=\dfrac{x+16}{x-16}:\dfrac{x+16}{\sqrt{x}+2}=\dfrac{\sqrt{x}+2}{x-16}\)
a, \(A=\left(\sqrt{12}-2\sqrt{5}\right)\sqrt{3}+\sqrt{60}\)
\(=\left(2\sqrt{3}-2\sqrt{5}\right)\sqrt{3}+2\sqrt{15}\)
\(=2\sqrt{9}-2\sqrt{15}+2\sqrt{15}=2\sqrt{9}\)
b, \(B=\frac{\sqrt{4x}}{x-3}\sqrt{\frac{x^2-6x+9}{x}}=\frac{2\sqrt{x}}{x-3}.\sqrt{\frac{\left(x-3\right)^2}{x}}\)
\(=\frac{2\sqrt{x}}{x-3}.\frac{x-3}{\sqrt{x}}=2\)
em thiếu, giờ mới nhìn lại \(2\sqrt{9}=2.3=6\)