K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2021

\(B=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{x+1}{x-1}=\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{x-1}{x+1}\)

\(=\dfrac{2}{x-1}.\dfrac{x-1}{x+1}=\dfrac{2}{x+1}\)

Để \(B< 1\Rightarrow\dfrac{2}{x+1}< 1\Rightarrow1-\dfrac{2}{x+1}>0\Rightarrow\dfrac{x-1}{x+1}>0\)

mà \(x+1>0\left(x\ge0\right)\Rightarrow x-1>0\Rightarrow x>1\)

6 tháng 4 2018

Rút gọn biểu thức chứa căn bậc hai

Bài 1: 

a: \(B=\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}\cdot\dfrac{x-1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)

b: Để B=-1 thì \(2\sqrt{x}=-\sqrt{x}+3\)

=>3 căn x=3

=>căn x=1

hay x=1(loại)

Bài 2: 

a: \(P=\dfrac{a-1}{2\sqrt{a}}\cdot\left(\dfrac{\sqrt{a}\left(a-2\sqrt{a}+1\right)-\sqrt{a}\left(a+2\sqrt{a}+1\right)}{a-1}\right)\)

\(=\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{2}=-2\sqrt{a}\)

b: Để P>=-2 thì P+2>=0

\(\Leftrightarrow-2\sqrt{a}+2>=0\)

=>0<=a<1

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

Lời giải:

\(P=\frac{x+2}{(\sqrt{x})^3-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}\)

\(\frac{x+2}{\sqrt{x^3}-1}+\frac{(\sqrt{x}+1)(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}-\frac{1}{\sqrt{x}-1}\)

\(=\frac{x+2}{\sqrt{x^3}-1}+\frac{x-1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\)

\(=\frac{x+2+x-1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\)

\(=\frac{2x+1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}=\frac{2x+1}{\sqrt{x^3}-1}-\frac{x+\sqrt{x}+1}{\sqrt{x^3}-1}\)

\(=\frac{2x+1-(x+\sqrt{x})}{\sqrt{x^3}-1}=\frac{x-\sqrt{x}}{\sqrt{x^3}-1}\)

\(=\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

b) \(P-\frac{1}{3}=\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{3}=\frac{2\sqrt{x}-(x+1)}{3(x+\sqrt{x}+1)}\)

\(=\frac{-(\sqrt{x}-1)^2}{3(x+\sqrt{x}+1)}\)

Với \(x\neq 1, x\geq 0\Rightarrow -(\sqrt{x}-1)^2< 0; x+\sqrt{x}+1>0\)

Do đó: \(P-\frac{1}{3}< 0\Rightarrow P< \frac{1}{3}\)

29 tháng 9 2018

a) \(Q=\left(\dfrac{\sqrt{x}}{1-\sqrt{x}}+\dfrac{\sqrt{x}}{1+\sqrt{x}}\right)+\dfrac{3-\sqrt{x}}{x-1}\) ( \(x\ge0;x\ne1\) )

\(\Leftrightarrow Q=\dfrac{\sqrt{x}\left(1+\sqrt{x}\right)+\sqrt{x}\left(1-\sqrt{x}\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\dfrac{3-\sqrt{x}}{x-1}\)

\(\Leftrightarrow Q=\dfrac{2\sqrt{x}}{1-x}+\dfrac{3-\sqrt{x}}{x-1}\)

\(\Leftrightarrow Q=\dfrac{2\sqrt{x}}{1-x}+\dfrac{\sqrt{x}-3}{1-x}\)

\(\Leftrightarrow Q=\dfrac{2\sqrt{x}+\sqrt{x}-3}{1-x}\)

\(\Leftrightarrow Q=\dfrac{3\sqrt{x}-3}{1-x}\)

\(\Leftrightarrow Q=\dfrac{-\left(3\sqrt{x}-3\right)}{x-1}\)

\(\Leftrightarrow Q=\dfrac{-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow Q=\dfrac{-3}{\left(\sqrt{x}+1\right)}\)

b) Để Q = -1 <=> \(\dfrac{-3}{\left(\sqrt{x}+1\right)}=-1\) (ĐKXĐ: \(x\ge0\) )

\(\Rightarrow-\left(\sqrt{x}+1\right)=-3\)

\(\Leftrightarrow\sqrt{x}+1=3\)

\(\Leftrightarrow\sqrt{x}=3-1=2\)

\(\Leftrightarrow\left(\sqrt{x}\right)^2=2^2=4\)

\(\Leftrightarrow\left|x\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhan\right)\\x=-4\left(loai\right)\end{matrix}\right.\)

Vậy x = 4 thì Q = -1

Bài 1: 

a: \(A=\left(\sqrt{x}+\sqrt{y}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

b: \(\sqrt{xy}>=0;x-\sqrt{xy}+y>0\)

Do đó: A>=0

13 tháng 10 2017

a) B=\(\left(\dfrac{2x+1}{\sqrt{x^3}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)

=\(\dfrac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(1-\sqrt{x}+x-\sqrt{x}\right)\)

=\(\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)^2\)

=\(\dfrac{1}{\sqrt{x}-1}\left(\sqrt{x}-1\right)^2=\sqrt{x}-1\)

b) ta có : B=3 \(\Leftrightarrow\sqrt{x}-1=3\Leftrightarrow x=16\)

vậy để B=3 thì x=16

15 tháng 10 2017

thks bạn nha

25 tháng 6 2018

\(a.Q=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x\sqrt{x}-x+\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}}{x+1}\right)\)

\(ĐKXĐ:x\)\(0;x\) # \(1\)

\(Q=\left(\dfrac{x+1}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\dfrac{2}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right):\dfrac{x-\sqrt{x}+1}{x+1}\)

\(Q=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)}.\dfrac{x+1}{x-\sqrt{x}+1}=\dfrac{\sqrt{x}+1}{x-\sqrt{x}+1}\)

\(b.\) Ta thấy : \(x-\sqrt{x}+1=x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

Mà : \(\sqrt{x}+1>0\)

\(Q>0\)

25 tháng 6 2018

Phần c thì sao bn

1 tháng 9 2017

hình như câu 1,2 bn ghi sai biểu thức rồi

2 tháng 9 2017

xin lỗi nhé, bạn ghi lộn