K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2021

\(=>B=\dfrac{\left(\sqrt{x}-1\right)\sqrt{x}-5\sqrt{x}+8}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(B=\dfrac{x-\sqrt{x}-5\sqrt{x}+8}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{x-6\sqrt{x}+8}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(B=\dfrac{\left(\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-4}{\sqrt{x}}\)

Ta có: \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{5\sqrt{x}-8}{x-2\sqrt{x}}\)

\(=\dfrac{x-\sqrt{x}-5\sqrt{x}+8}{\sqrt{x}\cdot\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-6\sqrt{x}+8}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\)

1 tháng 2 2019

\(a)A=\dfrac{\sqrt{3}-\sqrt{6}}{1-\sqrt{2}}-\dfrac{2+\sqrt{8}}{1+\sqrt{2}}\\ A=\dfrac{\left(\sqrt{3}-\sqrt{6}\right)\left(1+\sqrt{2}\right)}{1^2-\left(\sqrt{2}\right)^2}-\dfrac{\left(2+\sqrt{8}\right)\left(1-\sqrt{2}\right)}{1^2-\left(\sqrt{2}\right)^2}\\ A=-\left(\sqrt{3}+\sqrt{6}-\sqrt{6}-2\sqrt{3}\right)+2-2\sqrt{2}+2\sqrt{2}-4\\ A=\sqrt{3}-2\)

\(b)B=\left(\dfrac{1}{x-4}-\dfrac{1}{x+4\sqrt{x}+4}\right).\dfrac{x+2\sqrt{x}}{\sqrt{x}}\\ B=\left[\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{1}{\left(\sqrt{x}+2\right)^2}\right].\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}\\ B=\dfrac{\sqrt{x}+2-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)^2}.\left(\sqrt{x}+2\right)\\ B=\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}+2\right)\\ B=\dfrac{4}{x-4}\)

1 tháng 2 2018

Đặt \(t=\sqrt{x}\) thì \(A=\dfrac{t}{t+5};B=\dfrac{2t}{t-4}-\dfrac{t^2+12t}{t^2-16}=\dfrac{2t\left(t+4\right)-t^2-12t}{t^2-16}=\dfrac{t^2-4t}{t^2-16}=\dfrac{t}{t+4}\)

\(\dfrac{A}{B}=\dfrac{t}{t+5}:\dfrac{t}{t+4}=\dfrac{t+4}{t+5}\) (với điều kiện \(t\ne0\)\(\Leftrightarrow x>0\))

1) Khi \(x=4\) thì \(t=2,A=\dfrac{2}{7}\).

2) \(B=\dfrac{t}{t+4}=\dfrac{\sqrt{x}}{\sqrt{x}+4}\).

3) \(\dfrac{A}{B}=\dfrac{5}{6}\Leftrightarrow\dfrac{t+4}{t+5}=\dfrac{5}{6}\)\(\Leftrightarrow6t+24=5t+25\)\(\Leftrightarrow t=1\)\(\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\).

Bài 1: 

a: \(B=\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}\cdot\dfrac{x-1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)

b: Để B=-1 thì \(2\sqrt{x}=-\sqrt{x}+3\)

=>3 căn x=3

=>căn x=1

hay x=1(loại)

30 tháng 8 2017

a)

\(\dfrac{\left(\sqrt{x^2+4}-2\right)\left(\sqrt{x^2+4}-2\right)\left(x+\sqrt{x}+1\right)\sqrt{x-2\sqrt{x}+1}}{x\left(x\sqrt{x}-1\right)}\\=\dfrac{\left(\left(\sqrt{x^2+4}\right)^2-4\right)\left(\left(x+\sqrt{x}+1\right)\sqrt{\left(x-1\right)^2}\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{\left(x^2+4-4\right)\left(\left(x+\sqrt{x}+1\right)\left(x-1\right)\right)}{x\left(x\sqrt{x}-1\right)}\\ =\dfrac{x^2\left(x^3-1\right)}{x\left(x\sqrt{x}-1\right)}=x^2\sqrt{x}\)

b)

\(\left(\dfrac{\sqrt{a}-2}{\sqrt{a}+2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-2}\right)\left(\sqrt{a}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\right)\left(\dfrac{a}{\sqrt{a}}-\dfrac{4}{\sqrt{a}}\right)\\ =\left(\dfrac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{a-4}\right)\left(\dfrac{a-4}{\sqrt{a}}\right)\\ =\dfrac{-8\sqrt{a}}{a-4}\cdot\dfrac{a-4}{\sqrt{a}}=-8\)

c)

\(\left(\dfrac{\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)}+\dfrac{\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)}\right)\left(1-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}}{\sqrt{a}}-\dfrac{1}{\sqrt{a}}\right)\\ =\left(\dfrac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\\ =\dfrac{2a+2}{a-1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(a+1\right)}{a+1}\cdot\dfrac{\sqrt{a}-1}{\sqrt{a}}\\ =\dfrac{-2\left(\sqrt{a}-1\right)}{\sqrt{a}}\)

d)

\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}^3+1\right)}{x-\sqrt{x}+1}+x+1\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+x+1\\ =\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)+x+1\\ =x-\sqrt{x}-x-\sqrt{x}+x+1\\ =x-2\sqrt{x}+1\\ =\left(x-1\right)^2\)

Bài 2:

a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)

\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)

\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)

b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)

25 tháng 5 2019

a) P = \(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}-\frac{\sqrt{x}-1}{x+\sqrt{x}}\right)\).

P = \(\frac{\sqrt{x}.\sqrt{x}-1}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\sqrt{x}\left(\sqrt{x}-1\right)}\)

P = \(\frac{x-1}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{x-1-x+\sqrt{x}}\)

P = \(\frac{x-1}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

P = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

P = \(\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

P = \(x-1\).

b) P = \(\frac{9}{2}\).

\(x-1=\frac{9}{2}\)

\(x=\frac{11}{2}\).

Vậy \(x=\frac{11}{2}\)thì P = \(\frac{9}{2}\).

25 tháng 5 2019

Thank you,bn.

a: \(M=\dfrac{x+6\sqrt{x}-3\sqrt{x}+18-x}{x-36}\)

\(=\dfrac{3\left(\sqrt{x}+6\right)}{x-36}=\dfrac{3}{\sqrt{x}-6}\)

b: \(N=\dfrac{x^2}{y}\cdot\sqrt{xy\cdot\dfrac{y}{x}}-x^2\)

\(=\dfrac{x^2}{y}\cdot y-x^2=0\)

 

a: \(T=1:\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right)\)

\(=1:\dfrac{x+2+x-1-x-\sqrt{x}-1}{x\sqrt{x}-1}\)

\(=\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

b: \(T-3=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>0\)

=>T>3

30 tháng 6 2018

có phải/....

1) \(A=\dfrac{x+3}{\sqrt{x}-2}\)

\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\sqrt{x}-2}{x-4}\) hay \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\left(\sqrt{x}-2\right)}{x-4}\)

2) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)

30 tháng 6 2018

1.B=\(\dfrac{\sqrt{x-1}}{\sqrt{x+2}}\)

Bài 2: 

a: \(P=\dfrac{a-1}{2\sqrt{a}}\cdot\left(\dfrac{\sqrt{a}\left(a-2\sqrt{a}+1\right)-\sqrt{a}\left(a+2\sqrt{a}+1\right)}{a-1}\right)\)

\(=\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{2}=-2\sqrt{a}\)

b: Để P>=-2 thì P+2>=0

\(\Leftrightarrow-2\sqrt{a}+2>=0\)

=>0<=a<1