Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm luôn nhé
\(2B=21.2\left[\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)\right]^2-2.15\sqrt{15}\)
\(2B=21\left(\sqrt{3}+1+\sqrt{5}-1\right)^2-6\left(\sqrt{3}-1+\sqrt{5}-1\right)^2-30\sqrt{15}\)
\(2B=21\left(\sqrt{3}+\sqrt{5}\right)^2-6\left(\sqrt{3}+\sqrt{5}\right)^2-30\sqrt{15}\)
\(2B=15\left(\sqrt{3}+\sqrt{5}\right)^2-30\sqrt{15}\)
\(2B=15\left(8+2\sqrt{15}\right)-30\sqrt{15}\)
\(2B=120+30\sqrt{15}-30\sqrt{5}\)
\(2B=120\)
\(B=60\)
Sửa đề
\(A=\left(2-\sqrt{3}\right)\sqrt[3]{26+15\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt[3]{26-15\sqrt{3}}\)
\(=\left(2-\sqrt{3}\right)\sqrt[3]{8+12\sqrt{3}+18+3\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt[3]{8-12\sqrt{3}+18-3\sqrt{3}}\)
\(=\left(2-\sqrt{3}\right)\sqrt[3]{\left(2+\sqrt{3}\right)^3}-\left(2+\sqrt{3}\right)\sqrt[3]{\left(2-\sqrt{3}\right)^3}\)
\(=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)-\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=0\)
\(B=\dfrac{21}{2}\left(\sqrt{4+2\sqrt{3}}+\sqrt{6-2\sqrt{5}}\right)^2-3\left(\sqrt{4-2\sqrt{3}}+\sqrt{6+2\sqrt{5}}\right)^2-15\sqrt{15}\)
\(=\dfrac{21}{2}\left(\sqrt{3}+1+\sqrt{5}-1\right)^2-3\left(\sqrt{3}-1+\sqrt{5}+1\right)^2-15\sqrt{15}\)
\(=\dfrac{21}{2}\left(\sqrt{3}+\sqrt{5}\right)^2-3\left(\sqrt{3}+\sqrt{5}\right)^2-15\sqrt{15}\)
\(=\dfrac{15}{2}\left(8+2\sqrt{15}\right)-15\sqrt{15}\)
\(=60+15\sqrt{15}-15\sqrt{15}=60\)
câu b trc nha
B = \(\dfrac{4+\sqrt{2}-\sqrt{3}-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}\)
= \(\dfrac{4+\sqrt{2}-\sqrt{3}-\sqrt{2}.\sqrt{3}+2\sqrt{2}}{2+\sqrt{2}-\sqrt{3}}\)
= \(\dfrac{2+2+\sqrt{2}+2\sqrt{2}-\sqrt{3}-\sqrt{6}}{2+\sqrt{2}-\sqrt{3}}\)
= \(\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)+2\left(\sqrt{2}+1\right)-\sqrt{3}\left(\sqrt{2}+1\right)}{2+\sqrt{2}-\sqrt{3}}\)
= \(\dfrac{\left(\sqrt{2}+1\right)\left(2+\sqrt{2}-\sqrt{3}\right)}{2+\sqrt{2}-\sqrt{3}}\)
= \(\sqrt{2}\) + 1
A = \(\dfrac{21}{2}\) . (\(\sqrt{4+2\sqrt{3}}\) + \(\sqrt{6-2\sqrt{5}}\) )2 - 15\(\sqrt{15}\)
- 3(\(\sqrt{4-2\sqrt{3}}\) +\(\sqrt{6+2\sqrt{5}}\) )2
= \(\dfrac{21}{2}\).(\(\sqrt{\left(\sqrt{3}+1\right)^2}\) + \(\sqrt{\left(\sqrt{5}-1\right)^2}\))2-15\(\sqrt{15}\)
-3(\(\sqrt{\left(\sqrt{3}-1\right)^2}\) + \(\sqrt{\left(\sqrt{5}+1\right)^2}\))2
= \(\dfrac{21}{2}\).(\(\sqrt{3}\) +1+ \(\sqrt{5}\) - 1)2 -3.(\(\sqrt{3}\) - 1 + \(\sqrt{5}\) +1)2
- 15\(\sqrt{15}\)
= \(\dfrac{21}{2}\).(8+2\(\sqrt{15}\) ) - 3(8 + 2\(\sqrt{15}\) ) -15\(\sqrt{15}\)
= \(\dfrac{15}{2}\) .2.(4+\(\sqrt{15}\) ) - 15\(\sqrt{15}\)
= 15.( 4 + \(\sqrt{15}\) ) - 15\(\sqrt{15}\)
= 15.(4+\(\sqrt{15}\) -\(\sqrt{15}\)) =15.4 = 60
Vậy A = 60.
\(=\frac{21}{2}\left(\sqrt{4+2\sqrt{3}}+\sqrt{6-2\sqrt{5}}\right)^2-3\left(\sqrt{4-2\sqrt{3}}+\sqrt{6+2\sqrt{5}}\right)^2-15\sqrt{15}\)
\(=\frac{21}{2}\left(\sqrt{3}+1+\sqrt{5}-1\right)^2-3\left(\sqrt{3}-1+\sqrt{5}+1\right)^2-15\sqrt{15}\)
\(=\frac{15}{2}\left(\sqrt{3}+\sqrt{5}\right)^2-15\sqrt{15}\)
\(=\frac{15}{2}\left(8+2\sqrt{15}\right)-15\sqrt{15}\)
\(=60+15\sqrt{15}-15\sqrt{15}=60\)
Hơi mờ nha cậu