Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(A=\left(\frac{2\sqrt{xy}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}+\frac{\sqrt{x}-\sqrt{y}}{2\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{y}-\sqrt{x}}\)
\(=\left(\frac{4\sqrt{xy}+\left(\sqrt{x}-\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\) (Quy đồng biểu thức đầu và đổi dấu số hạng cuối)
\(=\left(\frac{4\sqrt{xy}+x-2\sqrt{xy}+y}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(=\frac{\sqrt{x}+\sqrt{y}}{2\left(\sqrt{x}-\sqrt{y}\right)}\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}-\sqrt{y}}=1.\)
Vậy giá trị biểu thức \(A=1.\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{2\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\cdot\frac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\frac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(a,\frac{\sqrt{108x^3}}{\sqrt{12x}}=\frac{\sqrt{36.3.x^3}}{\sqrt{3.4.x}}=\frac{6\sqrt{3}.\sqrt{x}^3}{2\sqrt{3}.\sqrt{x}}=3\sqrt{x}^2=3x\)
\(b,\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}=\frac{\sqrt{13}.\sqrt{x^4}.\sqrt{y^6}}{\sqrt{16.13}.\sqrt{x^6}.\sqrt{y^6}}=\frac{\sqrt{13}.x^2y^3}{4\sqrt{13}x^3y^3}=\frac{1}{4x}\)
\(c,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(=\frac{\sqrt{x}^3+\sqrt{y}^3}{\sqrt{x}+\sqrt{y}}-\left(x+2\sqrt{xy}+y\right)\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x-2\sqrt{xy}-y\)
\(=x-\sqrt{xy}+y-x-2\sqrt{xy}-y=-3\sqrt{xy}\)
\(d,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
Đk chỗ này là \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge\sqrt{1}\Rightarrow x\ge1\)nhé
\(e,\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}.\frac{y-2\sqrt{y}+1}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)
a) \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)
\(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)
b) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)
c) \(4x-\sqrt{8}+\frac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}=4x-\sqrt{8}+\frac{\sqrt{x^2\left(x+2\right)}}{x+2}=4x-\sqrt{8}+x=5x-\sqrt{8}\)