\(\frac{1}{1^4+1^2+1}+\frac{2}{2^4+2^2+2}+\frac{3}{3^4+3^2+3}+...+\frac{2014...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2016

ở mẫu   n4+n2+1=(n2+n+1)(n2-n+1)

\(\frac{2n}{n^4+n^2+1}=\frac{\left(n^2+n+1\right)-\left(n^2-2+1\right)}{\left(n^2-n+1\right)\left(n^2+n+1\right)}\)

30 tháng 3 2016

0.4999998768

5 tháng 10 2017

\(\frac{2014}{\sqrt{1}+\sqrt{2}}+\frac{2014}{\sqrt{2}+\sqrt{3}}+...+\frac{2014}{\sqrt{99}+\sqrt{100}}\)

\(=2014.\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\right)\)

\(=2014.\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)

\(=2014.\left(\sqrt{100}-\sqrt{1}\right)=2014.9=18126\)

5 tháng 10 2017

\(\frac{2014}{\sqrt{1}+\sqrt{2}}+\frac{2014}{\sqrt{2}+\sqrt{3}}+.....+\frac{2014}{\sqrt{9}+\sqrt{100}}\)

\(=\sqrt{1}-\sqrt{2}+\sqrt{3}-\sqrt{2}+....+\sqrt{100}-\sqrt{999}\)

\(=\sqrt{100}-1\)

\(=9\)

P/s: Không chắc à

7 tháng 4 2016

Áp dụng a/(a^4+a^2+1)=1/2.(1/(a^2-a+1)-1/(a^2+a+1)) ta được

A=1/2.(1/(1^2-1+1)-1/(1^2+1+1)+1/(2^2-2+1)-1/(2^2+2+10)+...+1/(2014^2-2014+1)-1/(2014^2+2014+1))

A=1/2.(1-1/(2014^2+2014+1))

A=-2029105/4058211

(CHẮC CHẮN ĐÚNG)

7 tháng 4 2016

A=2029105/4058211

31 tháng 7 2015

\(\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}+...-\frac{1}{\sqrt{2013}-\sqrt{2014}}+\frac{1}{\sqrt{2014}-\sqrt{2015}}\)

\(=\frac{\sqrt{2}+\sqrt{3}}{2-3}-\frac{\sqrt{3}+\sqrt{4}}{3-4}+...+\frac{\sqrt{2014}+\sqrt{2015}}{2014-2015}\)

\(=-\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{3}+\sqrt{4}-\left(\sqrt{4}+\sqrt{5}\right)+...+\sqrt{2014}+\sqrt{2015}\)

=\(-\sqrt{2}+\sqrt{2015}\)

10 tháng 4 2015

cau 1 ket qua la 2013/4028

7 tháng 4 2016

3. P = 9

bạn cx thi violympic cấp quốc gia hả?