\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)và B=\(\dfrac{\s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: M=A+B

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{11\sqrt{x}-3}{x-9}\)

\(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3+11\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)

17 tháng 7 2018

\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)

\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)

\(\Leftrightarrow\sqrt{x}-2< 0\)

\(\Leftrightarrow x< 4\)

Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)

KL............

\(2.\) Tương tự bài 1.

\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)

\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)

Bài 1: 

a: \(B=\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}\cdot\dfrac{x-1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)

b: Để B=-1 thì \(2\sqrt{x}=-\sqrt{x}+3\)

=>3 căn x=3

=>căn x=1

hay x=1(loại)

25 tháng 4 2017

a)C=\(\dfrac{9}{\sqrt{x}+3}\)

b)\(x>36\)

27 tháng 5 2017

Ôn tập Căn bậc hai. Căn bậc ba

Ôn tập Căn bậc hai. Căn bậc ba

19 tháng 3 2021

a/ \(P=12\)

b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:

\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )

19 tháng 3 2021

a. Thay x = 3 vào biểu thức P ta được :

\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)

b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)

c, Ta có :

\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)

Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)

Bài 2:

a: \(A=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5\sqrt{x}+1}{\sqrt{x}+3}\)

b: Để A=1/2 thì \(\dfrac{-5\sqrt{x}+1}{\sqrt{x}+3}=\dfrac{1}{2}\)

\(\Leftrightarrow-10\sqrt{x}+2=\sqrt{x}+3\)

hay \(x\in\varnothing\)

a: \(A=\dfrac{\sqrt{3}+1}{\sqrt{3}+1}+\sqrt{5}+3-3-\sqrt{5}=1\)

b: \(B=\dfrac{-\sqrt{x}-3+x-3\sqrt{x}-x-9}{x-9}=\dfrac{-4\sqrt{x}-12}{x-9}=\dfrac{-4}{\sqrt{x}-3}\)

Để B>1 thì \(\dfrac{-4-\sqrt{x}+3}{\sqrt{x}-3}>0\)

\(\Leftrightarrow\sqrt{x}-3< 0\)

hay 0<x<9

21 tháng 6 2017

1/

a) \(\left(\dfrac{2\sqrt{2}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\left(\dfrac{2\sqrt{2}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\dfrac{2\sqrt{x}-2-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\)

\(=\dfrac{2\sqrt{2}\cdot\left(\sqrt{x}-3\right)+\sqrt{x}\cdot\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x-3}}\)

\(=\dfrac{2\sqrt{2x}-6\sqrt{2}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\dfrac{2\sqrt{2x}-6\sqrt{2}-2x+3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{2x}-6\sqrt{2}-2x+3\sqrt{x}-3}{x+\sqrt{x}+3\sqrt{x}+3}\)

\(=\dfrac{2\sqrt{2x}-6\sqrt{2}-2x+3\sqrt{x}-3}{x+4\sqrt{x}+3}\)

21 tháng 6 2017

bài 2 : đk : \(x\ge0;x\ne1\)

a) P = \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

P = \(\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)

P = \(\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\) P = \(\dfrac{15\sqrt{x}-11-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

P = \(\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

P = \(\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\) = \(\dfrac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\) = \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)

b) P = \(\dfrac{1}{2}\) \(\Leftrightarrow\) \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}=\dfrac{1}{2}\) \(\Leftrightarrow\) \(\sqrt{x}+3=4-10\sqrt{x}\)

\(\Leftrightarrow\) \(11\sqrt{x}-1=0\) \(\Leftrightarrow\) \(11\sqrt{x}=1\) \(\Leftrightarrow\) \(\sqrt{x}=\dfrac{1}{11}\) \(x=\left(\dfrac{1}{11}\right)^2=\dfrac{1}{121}\)