Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{A}{\sqrt{2}}\)=\(\frac{\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}}{\sqrt{2x-1+2\sqrt{2x-1}+1}-\sqrt{2x-1-2\sqrt{2x-1}+1}}\) (DK \(x\ge1\)
\(=\frac{\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|}{\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|}\)
vs \(x\ge2\) \(\frac{\sqrt{x-1}+1+\sqrt{x-1}-1}{\sqrt{2x-1}+1-\sqrt{2x-1}+1}=\frac{2\sqrt{x-1}}{2}=\sqrt{x-1}\) \(\Rightarrow A=\sqrt{2x-2}\)
vs \(1\le x< 2\) \(\frac{\sqrt{x-1}+1+1-\sqrt{x-1}}{\sqrt{2x-1}+1-1+\sqrt{2x-1}}=\frac{1}{\sqrt{2x-1}}\) \(\Rightarrow A=\frac{\sqrt{2}}{\sqrt{2x-1}}\)
\(\sqrt{2X-1}\ge1\Leftrightarrow X\ge1\)NEN SUY RA THEO CACH LAM CUA TO
THOI U AM BUSY SEE YOU AGAIN
a) ĐKXĐ: \(\hept{\begin{cases}2x-1\ge0\\2x\ge2\sqrt{2x-1}\end{cases}}\)\(\Leftrightarrow x\ge\frac{1}{2}\)
A=\(\sqrt{2x-1+1+2\sqrt{2x-1}}\)\(-\sqrt{2x-1+1-2\sqrt{2x-1}}\)
=\(\sqrt{\left(\sqrt{2x-1}+1\right)^2}\)\(-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)
=\(\sqrt{2x-1}+1-|\sqrt{2x-1}-1|\)
Nếu \(x\ge1\)thì A=\(\sqrt{2x-1}+1-\left(\sqrt{2x-1}-1\right)\)=2.
Nếu \(\frac{1}{2}\le x< 1\)thì A=\(\sqrt{2x-1}+1-\left(1-\sqrt{2x-1}\right)\)=\(2\sqrt{2x-1}\).
b)A<1 thì \(\frac{1}{2}\le x< 1\)và \(2\sqrt{2x-1}< 1\)\(\Leftrightarrow4\left(2x-1\right)< 1\)\(\Leftrightarrow8x-4< 1\)\(\Leftrightarrow x< \frac{5}{8}\)(tm)
Vậy A<1 thì \(\frac{1}{2}\le x< \frac{5}{8}\).
\(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
\(=\sqrt{x-2+2\sqrt{x-2}\sqrt{2}+2}+\sqrt{x-2-2\sqrt{x-2}\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{x-2}+\sqrt{2}\right|+\left|\sqrt{x-2}-\sqrt{2}\right|\)
\(\text{Với }\sqrt{x-2}\ge\sqrt{2}\text{ thì : }A=\sqrt{x-2}+\sqrt{2}+\sqrt{x-2}-\sqrt{2}=2\sqrt{x-2}\)
\(\text{Với }\sqrt{x-2}\le\sqrt{2}\text{ thì : }A=\sqrt{x-2}+\sqrt{2}+\sqrt{2}-\sqrt{x-2}=2\sqrt{2}\)