K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2023

\(A=\left(\dfrac{3x-x^2}{9-x^2}-1\right):\left(\dfrac{9-x^2}{x^2+x-6}+\dfrac{x-3}{2-x}-\dfrac{x+2}{x+3}\right)\left(dk:x\ne\pm3,x\ne2\right)\)

\(=\dfrac{3x-x^2-9+x^2}{9-x^2}:\left(\dfrac{9-x^2}{\left(x-2\right)\left(x+3\right)}-\dfrac{x-3}{x-2}-\dfrac{x+2}{x+3}\right)\)

\(=\dfrac{3x-9}{9-x^2}:\dfrac{9-x^2-\left(x-3\right)\left(x+3\right)-\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}\)

\(=-\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}.\dfrac{\left(x-2\right)\left(x+3\right)}{9-x^2-\left(x^2-9\right)-\left(x^2-4\right)}\)

\(=-\dfrac{3}{x+3}.\dfrac{\left(x-2\right)\left(x+3\right)}{9-x^2-x^2+9-x^2+4}\)

\(=\dfrac{-3\left(x-2\right)}{22-3x^2}\)

\(=\dfrac{-3x+6}{22-3x^2}\)

Vậy \(A=\dfrac{-3x+6}{22-3x^2}\) với \(x\ne\pm3,x\ne2\)

Câu 1:Cho biểu thức \(P=\left(\frac{1}{x-1}-\frac{2}{x^2-1}\right):\left(\frac{1}{x+1}-\frac{2x-2}{x^2+x^2-x+1}\right)\)với \(x\ne\pm1\)a) Rút gọn P.b) Tìm tất cả giá trị nguyên của x để P đạt giá trị nguyên.Câu 2: 1. Cho đa thức \(P\left(x\right)=x^3-3x-1\)có 3 nghiệm phân biệt x1; x2; x3a) Chứng minh rằng: x1 + x2+ x3=0; x1x2 + x2x3 + x3x1 = -3 và x1x2x3=1b) Tính giá trị biểu thức: S = x19 + x29 + x39 ?2. Giải phương...
Đọc tiếp

Câu 1:

Cho biểu thức \(P=\left(\frac{1}{x-1}-\frac{2}{x^2-1}\right):\left(\frac{1}{x+1}-\frac{2x-2}{x^2+x^2-x+1}\right)\)với \(x\ne\pm1\)

a) Rút gọn P.

b) Tìm tất cả giá trị nguyên của x để P đạt giá trị nguyên.

Câu 2: 

1. Cho đa thức \(P\left(x\right)=x^3-3x-1\)có 3 nghiệm phân biệt x1; x2; x3

a) Chứng minh rằng: x+ x2+ x3=0; x1x+ x2x3 + x3x1 = -3 và x1x2x3=1

b) Tính giá trị biểu thức: S = x19 + x29 + x39 ?

2. Giải phương trình: \(\left(x^2-3x+2\right)\left(x^2+9x+20\right)=112\)

Bài 3: Cho tam giác ABC và điểm M di động trên đoạn BC. Gọi I là điểm bất kì trên đoạn AM và E là giao điểm của BI với cạnh AC.

a) Khi M và I thỏa mãn MC=2MB và AI=2IM. Tính tỉ số độ dài 2 đoạn AE và EC.

b) Khi M là trung điểm của BC, gọi F là giao điểm của CI với cạnh AB. Chứng minh rằng EF // BC ? 

0
10 tháng 11 2016

( x - 3 ) ( x2 + 3x + 9 ) - x ( x2 - 2 ) - 2 ( x - 1 )

= x3 - 27 - x3 + 2x - 2x + 2

= - 25

14 tháng 8 2020

Bài làm:

1) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)-2\)

\(=\left(x-3\right)\left(x^2-6x+9-x^2-3x-9\right)-2\)

\(=-9x\left(x-3\right)-2\)

\(=27x-9x^2-2\)

2) \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)

\(=\left(x-1\right)\left(x^2-2x+1-x^2-x-1+3x\right)\)

\(=\left(x-1\right).0=0\)

=> đpcm

3) \(\frac{68^3-52^3}{16}-68.52\)

\(=\frac{\left(68-52\right)\left(68^2+68.52+52^2\right)}{16}-68.52\)

\(=\frac{16\left(4624+68.52+2704\right)}{16}-68.52\)

\(=7328+68.52-68.52=7328\)

17 tháng 8 2016

1/ -3x+ 3x2

30 tháng 7 2015

 

(x+3)(x2-3x+9)-x(x-2)(x+2)=x3+27-x(x2-4)

=x3+27-x3+4x

=4x+27

Một lưu ý trc khi lm bài : Bn ko nên lm quá tắt tại vì biểu thức sẽ rất dễ mắc sai lầm.

\(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)\)

\(=x\left(x^2-3x+9\right)+3\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)\)

\(=x^3-3x^2+9x+3x^2-9x+27-x^3-2x^2+2x^2+4x\)

\(=\left(x^3-x^3\right)+\left(-3x^2+3x^2-2x^2+2x^2\right)+\left(9x-9x+4x\right)+27\)

\(=4x+27\)

25 tháng 2 2019

Phân thức đại số

26 tháng 2 2023

tui dở toán nhw chắc bn đúng á.(Đúng chuẩn nhân vật có chỉ số IQ cao top 10 trong conan và magic kaito:)))

6 tháng 7 2016

a) \(3x^2-2x\left(5+1,5x\right)+10x\)

\(=3x^2-10x-3x^2+10x=0\)

b) \(7x\left(4y-x\right)+4y\left(y-7x\right)-2\left(2y^2-3,5x\right)\)

\(=28xy-7x^2+4y^2-28xy-4y^2+7x\)

\(=-7x^2+7x\)

4 tháng 10 2015

a) 9x^2-6x+1+ 12x^2-2+ 4x^2-4x+1

=25x^2-10x

b) (x^2+2x+1)(x-3) -(x^3-27)

=x^3-3-x^3+27

=24

Nhớ ấn cho mfinh nhé, mình chưa có điểm cộng nào cảm ơn