K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 1 2022

\(A=\sqrt{\left(9\sqrt{2}+2\sqrt{3}\right)^2}-\sqrt{\left(9\sqrt{2}-\sqrt{3}\right)^2}\)

\(=\left|9\sqrt{2}+2\sqrt{3}\right|-\left|9\sqrt{2}-\sqrt{3}\right|\)

\(=9\sqrt{2}+2\sqrt{3}-9\sqrt{2}+\sqrt{3}=3\sqrt{3}\)

Kiểm tra lại đề bài câu B, chỗ \(\sqrt{2+\sqrt{2+2}}\)

10 tháng 1 2022

Câu B đúng đề bài ạ ! 

12 tháng 7 2019

\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=|2+\sqrt{3}|-|2-\sqrt{3}|\)

\(=2+\sqrt{3}-2+\sqrt{3}\)

\(=2\sqrt{3}\)

\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=|3+\sqrt{2}|-|3-\sqrt{2}|\)

\(=3+\sqrt{2}-3+\sqrt{2}\)

\(=2\sqrt{2}\)

\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)

\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)

\(=|3+2\sqrt{2}|+|3-2\sqrt{2}|\)

\(=3+2\sqrt{2}+3-2\sqrt{2}\)

\(=6\)

\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(=|2+\sqrt{5}|-|2-\sqrt{5}|\)

\(=2+\sqrt{5}-\sqrt{5}+2\)

\(=4\)

\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}\)

\(=|1+\sqrt{5}|-|1-\sqrt{5}|\)

\(=1+\sqrt{5}-\sqrt{5}+1\)

\(=2\)

12 tháng 7 2019

\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(A=\sqrt{3}+2+2-\sqrt{3}\)

A = 2 + 2

A = 4

\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(B=\sqrt{2}+3+3-\sqrt{2}\)

B = 3 + 3

B = 6

\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)

\(C=3+2\sqrt{2}+3-2\sqrt{2}\)

C = 3 + 3

C = 6

\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)

\(D=\sqrt{5}+2-\sqrt{5}+2\)

D = 2 + 2

D = 4

\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(E=\sqrt{5}+1-\sqrt{5}+1\)

E = 1 + 1

E = 2

1 tháng 10 2021

\(\sqrt{6-4\sqrt{2}}\)\(+\sqrt{22-12\sqrt{2}}\)

\(=\sqrt{4-4\sqrt{2}+2}\)\(+\sqrt{18-12\sqrt{2}+4}\)

\(=\sqrt{\left(2-\sqrt{2}\right)^2}\)\(+\sqrt{\left(2-3\sqrt{2}\right)^2}\)

\(=2-\sqrt{2}+3\sqrt{2}-2\)

\(=\left(2-2\right)+\left(-\sqrt{2}+3\sqrt{2}\right)\)

\(=0+2\sqrt{2}\)\(=2\sqrt{2}\)

1 tháng 10 2021

\(\sqrt{17-12\sqrt{2}}\)\(+\sqrt{9+4\sqrt{2}}\)

\(=\sqrt{\left(3-2\sqrt{2}\right)^2}\)\(+\sqrt{\left(2\sqrt{2}+1\right)^2}\)

\(=\left|3-2\sqrt{2}\right|\)\(+\left|2\sqrt{2}+1\right|\)

\(=3-2\sqrt{2}\)\(+2\sqrt{2}+1\)

\(=\left(3+1\right)+\left(-2\sqrt{2}+2\sqrt{2}\right)\)

\(=4+0=4\)

25 tháng 11 2020

học dốt quá

25 tháng 11 2020

Cho sửa phần mẫu số của câu trên thành \(\sqrt{6}+\sqrt{2}\)

\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{5-|2\sqrt{3}+1|}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{4+2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+|\sqrt{3}-1|}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{\sqrt{2}.\sqrt{4+2\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)

\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{3}+1}\)

\(=\frac{\sqrt{3}+1}{\sqrt{3}+1}=1\)

4 tháng 12 2020

Làm luôn nhé

\(2B=21.2\left[\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)\right]^2-2.15\sqrt{15}\)

\(2B=21\left(\sqrt{3}+1+\sqrt{5}-1\right)^2-6\left(\sqrt{3}-1+\sqrt{5}-1\right)^2-30\sqrt{15}\)

\(2B=21\left(\sqrt{3}+\sqrt{5}\right)^2-6\left(\sqrt{3}+\sqrt{5}\right)^2-30\sqrt{15}\)

\(2B=15\left(\sqrt{3}+\sqrt{5}\right)^2-30\sqrt{15}\)

\(2B=15\left(8+2\sqrt{15}\right)-30\sqrt{15}\)

\(2B=120+30\sqrt{15}-30\sqrt{5}\)

\(2B=120\)

\(B=60\)

25 tháng 6 2017

a) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)

= \(2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(2-\sqrt{3}+\sqrt{3}-1\) = \(1\)

b) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

= \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3-2\sqrt{6}\right)^2}\)

= \(3-\sqrt{6}+2\sqrt{6}-3\) = \(\sqrt{6}\)

c) \(\left(15\sqrt{200}-3\sqrt{450}+2\sqrt{50}\right):\sqrt{10}\)

= \(\dfrac{15\sqrt{200}}{\sqrt{10}}-\dfrac{3\sqrt{450}}{\sqrt{10}}+\dfrac{2\sqrt{50}}{\sqrt{10}}\)

= \(15\sqrt{20}-3\sqrt{45}+2\sqrt{5}\)

= \(30\sqrt{5}-9\sqrt{5}+2\sqrt{5}\) = \(23\sqrt{5}\)