Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x + 3)(x2 – 3x + 9) – (54 + x3) = (x + 3)(x2 – 3x + 32 ) - (54 + x3)
= x3 + 33 - (54 + x3)
= x3 + 27 - 54 - x3
= -27
b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
= (2x + y)[(2x)2 – 2 . x . y + y2] – (2x – y)(2x)2 + 2 . x . y + y2]
= [(2x)3 + y3]- [(2x)3 - y3]
= (2x)3 + y3- (2x)3 + y3= 2y3
Bài giải:
a) (x + 3)(x2 – 3x + 9) – (54 + x3) = (x + 3)(x2 – 3x + 32 ) - (54 + x3)
= x3 + 33 - (54 + x3)
= x3 + 27 - 54 - x3
= -27
b) (2x + y)(4x2 – 2xy + y2) – (2x – y)(4x2 + 2xy + y2)
= (2x + y)[(2x)2 – 2 . x . y + y2] – (2x – y)(2x)2 + 2 . x . y + y2]
= [(2x)3 + y3]- [(2x)3 - y3]
= (2x)3 + y3- (2x)3 + y3= 2y3
\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)+\left(3x-y\right)\left(9x^2+3xy+y^2\right)-35\left(x-1\right)\left(x^2+x+1\right)\)
\(=8x^3+y^3+27x^3-y^3-35\left(x^3-1\right)\)
\(=35x^3-35x^3+35\)
\(=35\)
a, (x+3)(x2-3x+9) - (54+x3)
=x3 + 27 - 54 - x3= - 27
b, (2x +y)(4x2-2xy+y2)-(2x-y)(4x2+2xy+y2)
=8x3+y3 - (8x3 -y3)=2y3
Cái này đơn giản như đang giỡn thôi:
\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)^3-27x^2y\)
\(=\left(3x\right)^3+y^3-\left[\left(3x\right)^3-3.\left(3x^2\right).+3.3x.y^2-y^3\right]-27x^2y\)
\(=27x^3+y^3-27x^3+27x^2y-9xy^2+y^3-27x^2y\)
\(=2y^3-9xy^2\)
a) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=24-11x\)
b) \(\left(4x^2-3y\right)\cdot2y-\left(3x^2-4y\right)\cdot3y\)
\(=8x^2y-6y^2-9x^2y+12y^2\)
\(=6y^2-x^2y\)
c) \(3y^2\left[\left(2x-1\right)+y+1\right]-y\left(1-y-y^2\right)+y\)
\(=3y^2\cdot\left(2x-1+y+1\right)-y\cdot\left(1-y-y^2\right)+y\)
\(=6xy^2-3y^2+3y^3+3y^2-y+y^2+y^3+y\)
\(=4y^3+y^2+6xy^2\)
b: \(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{\left(x+2\right)\left(x+3\right)+\left(x+1\right)\left(x+3\right)+\left(x+2\right)\left(x+1\right)}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
\(=\dfrac{x^2+5x+6+x^2+4x+3+x^2+3x+2}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
\(=\dfrac{3x^2+12x+11}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
c) hang dang thuc ( x -y+z)^2
o duoi phan h hang dang thuc luon
a) phan h nhan tu ra sao cho co tử la (x-1)(3x^2 -4x +1)
mau la (x-1)(2x^2 -x-3)
b ) k nhin dc de
H=(2x-y+10)+(4xy-8x^2-2y^2-4xy+10y+20x)+(4x-y)
H=(2x-y+10)+(4xy-16x-4y-4xy+10y+20x)+(4x-y)
H=(2x-y+10)+(4x+6y)+(4x-y)
H=2x-y+10+4x+6y+4x-y
H=10x+4y+10
\((2x+y) (4x^2-2xy+y^2)-(3x-y)(9x^2+3xy+y^2) =8x^3+y^3-9x^3+y^3=17x^3\)
\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left(2x+y\right)\left[\left(2x\right)^2-2xy+y^2\right]-\left(3x-y\right)\left[\left(3x\right)^2+3xy+y^2\right]\)
\(=\left(2x\right)^3+y^3-\left[\left(3x\right)^3-y^3\right]\)
\(=8x^3+y^3-27x^3+y^3\)
\(=-19x^3+2y^3\)