\(^2\)-(4x+6)(x+1)+(x+1)\(^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2019

\(A = \left( {\dfrac{3}{{2x + 4}} + \dfrac{x}{{2 - x}} - \dfrac{{2{x^2} + 3}}{{{x^2} - 4}}} \right):\dfrac{{2x - 1}}{{4x - 8}}\\ A = \left[ {\dfrac{3}{{2\left( {x + 2} \right)}} - \dfrac{x}{{x - 2}} - \dfrac{{2{x^2} + 3}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}} \right].\dfrac{{4x - 8}}{{2x - 1}}\\ A = \dfrac{{3\left( {x - 2} \right) - 2x\left( {x + 2} \right) - 2\left( {2{x^2} + 3} \right)}}{{2\left( {x - 2} \right)\left( {x + 2} \right)}}.\dfrac{{4\left( {x - 2} \right)}}{{2x - 1}}\\ A = \dfrac{{3x - 6 - 2{x^2} - 4x - 4{x^2} - 6}}{{x + 2}}.\dfrac{2}{{2x - 1}}\\ A = \dfrac{{ - x - 12 - 6{x^2}}}{{x + 2}}.\dfrac{2}{{2x - 1}}\\ A = \dfrac{{ - 2x - 24 - 12{x^2}}}{{2{x^2} - x + 4x - 2}}\\ A = \dfrac{{ - 12{x^2} - 2x - 24}}{{2{x^2} + 3x - 2}}\\ \)

11 tháng 2 2017

\(P=\frac{2x^5-x^4-2x+1}{4x^2-1}+\frac{8x^2-4x+2}{8x^3+1}\)

\(=\frac{x^4\left(2x-1\right)-\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(=\frac{\left(x^4-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(=\frac{\left(x^4-1\right)\left(2x-1\right)\left(4x^2-2x+1\right)+2\left(2x-1\right)\left(4x^2+2x+1\right)}{\left(2x-1\right)\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(=\frac{\left(2x-1\right)\left(4x^2-2x+1\right)\left(x^4-1+2\right)}{\left(2x-1\right)\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(=\frac{x^4+1}{2x+1}\)

12 tháng 2 2017

bạn ơi tìm các giá trị của x sau khi bạn đã rút gọn í cái đề mk đăng lên là dậy đó tìm x khi P = 6 đó!

29 tháng 11 2022

a: \(B=\left(\dfrac{4x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\cdot\dfrac{4\left(x^2-2x+4\right)}{\left(x-2\right)\left(x+2\right)}\right)\cdot\dfrac{x+2}{16}\cdot\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+x+1}\)

\(=\left(\dfrac{4x}{x+2}-\dfrac{4\left(x^2+2x+4\right)}{\left(x+2\right)^2}\right)\cdot\dfrac{x+2}{16}\cdot\dfrac{\left(x+2\right)\left(x+1\right)}{x^2+x+1}\)

\(=\dfrac{4x^2+8x-4x^2-8x-16}{\left(x+2\right)^2}\cdot\dfrac{\left(x+2\right)^2\cdot\left(x+1\right)}{16\left(x^2+x+1\right)}\)

\(=\dfrac{-16}{16\left(x^2+x+1\right)}\cdot\left(x+1\right)=-\dfrac{x+1}{x^2+x+1}\)

b: \(B=\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x+2}{x^2+x+1}\)

\(P=A+B=\dfrac{-x-1+x+2}{x^2+x+1}=\dfrac{1}{x^2+x+1}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< =1:\dfrac{3}{4}=\dfrac{4}{3}\)

Dấu = xảy ra khi x=-1/2

23 tháng 3 2017

a)

\(Q=\left(\dfrac{2x-x^2}{2x^2+8}-\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\left(\dfrac{2}{x^2}+\dfrac{1-x}{x}\right)\\ =\left(\dfrac{-x^3-4x}{2\left(x^2+4\right)\left(x-2\right)}\right)\left(\dfrac{2+x-x^2}{x^2}\right)\\ =\dfrac{x\left(x-2\right)^2\left(x+2\right)\left(x+1\right)}{2x^2\left(x^2+4\right)\left(x-2\right)}\)

\(=\dfrac{\left(x^2-4\right)\left(x+1\right)}{2x\left(x^2+4\right)}\)

27 tháng 5 2017

Haizzzzzzzzzzz! huhu

ĐKXĐ: \(x\ne0;\dfrac{-1}{2};\dfrac{1}{2}\)

\(\left(\dfrac{1+x}{x}+\dfrac{1}{4x^2}\right)\left(\dfrac{1-2x}{1+2x}-\dfrac{1}{1-4x^2}.\dfrac{1-4x+4x^2}{1+2x}\right)-\dfrac{1}{2x}\)

=

\(\dfrac{4x\left(x+1\right)+1}{4x^2}.\left[\dfrac{\left(1-2x\right)\left(1+2x\right)}{\left(2x+1\right)^2}-\dfrac{1}{\left(1-2x\right)\left(1+2x\right)}.\dfrac{\left(1-2x\right)^2}{1+2x}\right]\)\(-\dfrac{1}{2x}\)

= \(\dfrac{\left(2x+1\right)^2}{4x^2}.\left(\dfrac{1-4x^2}{\left(2x+1\right)^2}-\dfrac{1-2x}{\left(2x+1\right)^2}\right)-\dfrac{1}{2x}\)

= \(\dfrac{\left(2x+1\right)^2}{4x^2}.\dfrac{2x\left(1-2x\right)}{\left(2x+1\right)^2}-\dfrac{1}{2x}\)

= \(\dfrac{1-2x}{2x}-\dfrac{1}{2x}=\dfrac{-2x}{2x}=1\)

27 tháng 5 2017

Sửa cho tui đoạn kết quả nhé: = -1

\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x+5\right)\left(x-2\right)}\cdot\dfrac{\left(x-2\right)\left(x-7\right)}{\left(x+3\right)\left(x-2\right)}:\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x+2\right)\left(x+5\right)}\)

\(=\dfrac{\left(x-1\right)\left(x-7\right)}{\left(x+5\right)\left(x-2\right)}\cdot\dfrac{\left(x+2\right)\left(x+5\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x-7\right)\left(x+2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{4x\left(x+1\right)+1}{4x^2}\cdot\left(\dfrac{-\left(2x-1\right)}{2x+1}+\dfrac{1}{\left(2x+1\right)\left(2x-1\right)}\cdot\dfrac{\left(2x-1\right)^2}{2x+1}\right)-\dfrac{1}{2x}\)

\(=\dfrac{\left(2x+1\right)^2}{4x^2}\cdot\left(\dfrac{-\left(2x-1\right)}{2x+1}+\dfrac{2x-1}{\left(2x+1\right)^2}\right)-\dfrac{1}{2x}\)

\(=\dfrac{\left(2x+1\right)^2}{4x^2}\cdot\dfrac{-\left(2x-1\right)\left(2x+1\right)+2x-1}{\left(2x+1\right)^2}-\dfrac{1}{2x}\)

\(=\dfrac{-4x^2+1+2x-1}{4x^2}-\dfrac{1}{2x}\)

\(=\dfrac{-4x^2+2x}{4x^2}-\dfrac{1}{2x}\)

\(=\dfrac{-2x\left(2x-1\right)}{2x\cdot2x}-\dfrac{1}{2x}\)

\(=\dfrac{-2x+1-1}{2x}=\dfrac{-2x}{2x}=-1\)

\(A=\left(\dfrac{x^2-2x+1}{x^2+x+1}-\dfrac{-2x^2+4x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right):\dfrac{2x}{x^3+x}\)

\(=\dfrac{x^3-3x^2+3x-1+2x^2-4x-1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}\)

\(=\dfrac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}=\dfrac{x^2+1}{2}\)

Bài 1: 

\(=\dfrac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(A=\left(\dfrac{\left(x-1\right)^2}{x^2+x+1}+\dfrac{2x^2-4x-1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right)\cdot\dfrac{x^2+1}{x+1}\)

\(=\dfrac{x^3-3x^2+3x-1+2x^2-4x-1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{x+1}\)

\(=\dfrac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{x+1}=\dfrac{x^2+1}{x+1}\)