K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2021

`A=(1/(x-sqrtx)+1/(sqrtx-1)):(sqrtx+1)/(sqrtx-1)^2`

`=((sqrtx+1)/(x-sqrtx)).(sqrtx-1)^2/(sqrtx+1)`

`=(sqrtx-1)^2/(x-sqrtx)`

`=(sqrtx-1)/sqrtx`

2 tháng 7 2023

`a)->` ĐKXĐ : `x>=0;x\ne1`

`b)` Ta có :

`P=(\sqrtx)/(\sqrtx-1)-(2\sqrtx)/(\sqrtx+1)+(x-3)/(x-1)`

`P=(\sqrtx(\sqrtx+1)-2\sqrtx(\sqrtx-1)+x-3)/(x-1)`

`P=(x+\sqrtx-2x+2\sqrtx+x-3)/(x-1)`

`P=(3\sqrtx-3)/(x-1)`

`P=(3(\sqrtx-1))/((\sqrtx-1)(\sqrtx+1))`

`P=3/(\sqrtx+1)`

Vậy `P=3/(\sqrtx+1)` khi `x>=0;x\ne1`

2 tháng 7 2023

Em cảm ơn ạ

-> có thể giúp em nốt câu cuối không ạ

15 tháng 6 2021

a, \(A=\left(\frac{1}{1-\sqrt{x}}+\frac{1}{1+\sqrt{x}}\right):\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)+\frac{1}{1-\sqrt{x}}\)ĐK : \(x>0;x\ne1\)

\(=\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{1-x}\right):\left(\frac{1+\sqrt{x}-1+\sqrt{x}}{1-x}\right)+\frac{1}{1-\sqrt{x}}\)

\(=\frac{2}{1-x}.\frac{1-x}{2\sqrt{x}}+\frac{1}{1-\sqrt{x}}=\frac{1}{\sqrt{x}}+\frac{1}{1-\sqrt{x}}=\frac{1-\sqrt{x}+\sqrt{x}}{-x+\sqrt{x}}=\frac{1}{\sqrt{x}-x}\)

b, Ta có : \(x=7+4\sqrt{3}=7+2.2\sqrt{3}=\left(\sqrt{4}+\sqrt{3}\right)^2\)

\(A=\frac{1}{\sqrt{4}+\sqrt{3}-7+4\sqrt{3}}\)

a: \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}+x-\sqrt{x}-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)

\(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}:\dfrac{\sqrt{x}+1-2}{x-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\dfrac{x-1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b: Để A là số nguyên thì \(\sqrt{x}-1⋮\sqrt{x}+1\)

=>\(\sqrt{x}+1-2⋮\sqrt{x}+1\)

=>căn x+1 thuộc {1;2}

=>căn x thuộc {0;1}

mà x<>1

nên x=0

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Ta có: \(A=\left(\dfrac{\sqrt{x}+1}{x-1}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{2}{\sqrt{x}-1}\)