Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MTC=(x+2)(x+4)(x-2)(x-4)
\(\dfrac{-3}{x^2+6x+8}=\dfrac{-3\left(x-2\right)\left(x-4\right)}{\left(x+2\right)\left(x-2\right)\left(x+4\right)\left(x-4\right)}\)
\(\dfrac{5}{x^2-16}=\dfrac{5\left(x+2\right)\left(x-2\right)}{\left(x-4\right)\left(x+4\right)\left(x-2\right)\left(x+2\right)}\)
\(\dfrac{1}{x^2-2x-8}=\dfrac{1}{\left(x-4\right)\left(x+2\right)}=\dfrac{\left(x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)\left(x+4\right)\left(x-4\right)}\)
\(\frac{x+2}{4x-x^2-3}=\frac{-\left(x+2\right)}{x^2-4x+3}=\frac{\left(-x-2\right)\left(2x+5\right)}{\left(x-1\right)\left(x-3\right)\left(2x+5\right)}=\frac{-2x^2-9x-10}{\left(x-1\right)\left(x-3\right)\left(2x+5\right)}\)
\(\frac{1}{2x^2+3x-5}=\frac{1}{\left(x-1\right)\left(2x+5\right)}=\frac{x-3}{\left(x-1\right)\left(x-3\right)\left(2x+5\right)}\)
Ta có \(\frac{2}{x^3-y^3}=\frac{2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(\frac{2x-1}{x^2-y^2}=\frac{2x+1}{\left(x+y\right)\left(x-y\right)}\)
\(\frac{1}{x+y}\) giữ nguyên
MTC: \(\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)
Các nhân tử phụ tương ứng là : \(\left(x+y\right);\left(x-y\right)\left(x^2+xy+y^2\right);\left(x^2+xy+y^2\right)\)
Ta có:
\(\frac{2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\frac{2.\left(x+y\right)}{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)}\)
\(\frac{1}{x+y}=\frac{1.\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(\frac{2x+1}{\left(x+y\right)\left(x-y\right)}=\frac{\left(2x+1\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)}\)
a: \(\dfrac{1}{6x^2y^3}=\dfrac{7x^2}{42x^4y^3}\)
\(\dfrac{-5}{21xy^2}=\dfrac{-10x^3y}{42x^4y^3}\)
\(\dfrac{3}{14x^4y}=\dfrac{3\cdot3y}{42x^4y^3}=\dfrac{9y}{42x^4y^3}\)
b: \(\dfrac{2}{x^3-y^3}=\dfrac{2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x+y\right)}{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)}\)
\(\dfrac{2x+1}{x^2-y^2}=\dfrac{\left(2x+1\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{\left(2x+1\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)}\)
a) Tìm MTC:
2x + 6 = 2(x + 3)
x2 – 9 = (x – 3)(x + 3)
MTC = 2(x – 3)(x + 3) = 2(x2 – 9)
Nhân tử phụ:
2(x – 3)(x + 3) : 2(x + 3) = x – 3
2(x – 3)(x + 3) : (x2 – 9) = 2
Qui đồng:
b) Tìm MTC:
x2 – 8x + 16 = (x – 4)2
3x2 – 12x = 3x(x – 4)
MTC = 3x(x – 4)2
Nhân tử phụ:
3x(x – 4)2 : (x – 4)2 = 3x
3x(x – 4)2 : 3x(x – 4) = x – 4
Qui đồng:
click mh nha
\(\frac{-3}{x^2+6x+8}=\frac{-3}{x\left(x+2\right)+4\left(x+2\right)}=\frac{-3}{\left(x+2\right)\left(x+4\right)}=\frac{-3x+12}{\left(x+2\right)\left(x+4\right)\left(x-4\right)}\)
\(\frac{5}{x^2-16}=\frac{5}{\left(x-4\right)\left(x+4\right)}=\frac{5x+10}{\left(x+2\right)\left(x-4\right)\left(x+4\right)}\)
\(\frac{1}{x^2-2x-8}=\frac{1}{x\left(x-4\right)+2\left(x-4\right)}=\frac{1}{\left(x-4\right)\left(x+2\right)}=\frac{x+4}{\left(x+2\right)\left(x+4\right)\left(x-4\right)}\)