Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\widehat{BCA}+\widehat{ACD}=30+80=110\)
\(\widehat{ABC}+\widehat{BCD}=70+110=180\)
=>AB//CD ( Cặp góc trong cùng phía bù nhau)
Xét \(\Delta ABC\) có :
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( bđt \(\Delta\))
\(\Rightarrow\widehat{A}+70^0+30^0=180^0\)
\(\Rightarrow\widehat{A}=80^0\)
\(\Rightarrow\widehat{A}=\widehat{ACB}\)
Mà \(\widehat{A};\widehat{ABC}\) đồng vị
=> AB // CD
1 2 A M N D B C
A^ + B^ = 90o (phụ nhau)
A^ + 2* A^=90o
3* A^ = 90o
A^= 30o
B^= 2* A^ =2* 30o = 60o
a)
Xét \(\Delta\)ACD và \(\Delta\)ACB:
ACD^ = ACB^= 90o
AC chung
CD =CB
=> \(\Delta\)ACD =\(\Delta\)ACB (2 cạnh góc vuông)
=> AD = AB(2 cạnh tương ứng)
Phải là :Trên AD lấy M, trên AB lấy N (AM = AN) chứ.
b)
\(\Delta\)ACD =\(\Delta\)ACB (cmt) => A1 =A2 (2 góc tương ứng)
Xét \(\Delta\)AMC và \(\Delta\)ANC:
AC chung
A1 =A2 (cmt)
AM =AN
=> \(\Delta\)AMC = \(\Delta\)ANC (c.g.c)
=> CM =CN (2 cạnh tương ứng)
c)
AD = AB (cmt) =. D^ = B^
D^ + B^ + DAB^ =180o
2* D^ +DAB^=180o
D^= \(\frac{180o-DAB}{2}\) (1)
Ta có: AM = AN => AMN^ = ANM^
AMN^ + ANM^ + DAB^ =180o
2* AMN^ + DAB = 180o
AMN^ = \(\frac{180o-DAB}{2}\) (2)
Từ (1) và (2) => D^ = AMN^
Mà D^ so le trong với AMN^ => MN // DB
A B C D M N x y
Dpcm ANx // CNy
do AB//CD nen
=>AM // CM va MB//ND
=>AMB // CND
=>ANx // CNy
a). Ta có: góc AMx=góc B (GT)
Mà góc AMx và góc B là hai góc đồng vị.
=> Mx//BC.
Kéo dài tia Mx, cắt CD tại E.
Vì AB//CD(gt) nên AMEˆ=DEMˆ(slt)AME^=DEM^(slt)
mà theo gt AMEˆ=CNyˆAME^=CNy^ nên DEMˆ=CNyˆDEM^=CNy^
=> Mx//Ny(do có 1 cặp góc bằng nhau ở vị trí so le trong
A M x C D
?o?n th?ng f: ?o?n th?ng [A, B] ?o?n th?ng f_1: ?o?n th?ng [A_1, C] ?o?n th?ng h: ?o?n th?ng [A, D] ?o?n th?ng i: ?o?n th?ng [B, C] ?o?n th?ng j: ?o?n th?ng [A, C] ?o?n th?ng k: ?o?n th?ng [B, D] ?o?n th?ng l: ?o?n th?ng [A, M] ?o?n th?ng m: ?o?n th?ng [A, N] A = (0.14, 4.82) A = (0.14, 4.82) A = (0.14, 4.82) B = (5.32, 4.88) B = (5.32, 4.88) B = (5.32, 4.88) D = (3.64, 1.1) D = (3.64, 1.1) D = (3.64, 1.1) C = (8.82, 1.16) C = (8.82, 1.16) C = (8.82, 1.16) ?i?m M: Trung ?i?m c?a i ?i?m M: Trung ?i?m c?a i ?i?m M: Trung ?i?m c?a i ?i?m N: Trung ?i?m c?a f_1 ?i?m N: Trung ?i?m c?a f_1 ?i?m N: Trung ?i?m c?a f_1 ?i?m E: Giao ?i?m c?a k, l ?i?m E: Giao ?i?m c?a k, l ?i?m E: Giao ?i?m c?a k, l ?i?m F: Giao ?i?m c?a k, m ?i?m F: Giao ?i?m c?a k, m ?i?m F: Giao ?i?m c?a k, m ?i?m O: Giao ?i?m c?a j, k ?i?m O: Giao ?i?m c?a j, k ?i?m O: Giao ?i?m c?a j, k
a. Do AB//CD nên góc ABD = BDC, ADB = CBD. Suy ra \(\Delta ABD=\Delta CDB\left(g-c-g\right)\Rightarrow AB=CD,AD=BC\)
b. Dễ thấy \(\Delta AOB=\Delta COD\left(g-c-g\right)\Rightarrow OA=OC,OB=OD\)
c. Xét tam giác ABC có AM và BO là các đường trung tuyến nên E là trọng tâm, vậy OB = 2EO.
Tương tự DF=2FO. Mà OD = OB. Vậy BE = EF = DF.
a: BC=căn 5^2+12^2=13cm
b: AB<AC<BC
=>góc C<góc B<góc A
c: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung
AB=AD
=>ΔCAB=ΔCAD
d: góc EAC=góc ACB
góc ACB=góc ECA
=>góc EAC=góc ECA
=>ΔEAC cân tại E
Gọi Ax đối AB
\(\Rightarrow\widehat{xAE}=180^0-\widehat{BAE}=80^0\left(kề.bù\right)\\ \Rightarrow\widehat{xAC}=\widehat{EAC}-\widehat{xAE}=120^0-80^0=40^0\\ \Rightarrow\widehat{xAC}+\widehat{ACD}=40^0+140^0=180^0\)
Mà 2 góc này ở vị trí trong cùng phía nên Ax//CD
Mà Ax đối AB nên AB//CD