Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5\sqrt{\dfrac{1}{2}}+\dfrac{1}{2}\sqrt{20}+\sqrt{5}\)
\(=\dfrac{5\sqrt{2}}{2}+\sqrt{5}+\sqrt{5}=\dfrac{5\sqrt{2}}{2}+2\sqrt{5}\)
\(=\dfrac{5\sqrt{2}}{2}+\dfrac{4\sqrt{5}}{2}=\dfrac{5\sqrt{2}+4\sqrt{5}}{2}\)
\(5\sqrt{\dfrac{1}{2}}+\dfrac{1}{2}\sqrt{20}+\sqrt{5}=\dfrac{5}{\sqrt{2}}+\dfrac{\sqrt{20}}{2}+\sqrt{5}=\dfrac{5\sqrt{2}+\sqrt{20}}{2}+\sqrt{5}=\dfrac{\sqrt{50}+\sqrt{20}}{\sqrt{4}}+\sqrt{5}=\dfrac{\sqrt{10}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{4}}+\sqrt{5}=\dfrac{\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{2}}+\sqrt{5}=\dfrac{5+\sqrt{10}+\sqrt{10}}{\sqrt{2}}=\dfrac{5+2\sqrt{10}}{\sqrt{2}}\)
\(\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}\\ =\dfrac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\dfrac{2+\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\\ =\dfrac{2-\sqrt{3}+2+\sqrt{3}}{2^2-\left(\sqrt{3}\right)^2}\\ =\dfrac{2+2}{4-3}\\ =4\)
Ta có: \(\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}\)
\(=2-\sqrt{3}+2+\sqrt{3}\)
=4
`(4\sqrt{6}+x)^2=8^2+(6+\sqrt{x^2+4})^2`
`<=>96+8\sqrt{6}x+x^2=64+36+12\sqrt{x^2+4}+x^2+4`
`<=>2\sqrt{6}x-2=3\sqrt{x^2+4}` `ĐK: x >= \sqrt{6}/6`
`<=>24x^2-8\sqrt{6}x+4=9x^2+36`
`<=>15x^2-8\sqrt{6}x-32=0`
`<=>x^2-[8\sqrt{6}]/15x-32/15=0`
`<=>(x-[4\sqrt{6}]/15)^2-64/25=0`
`<=>|x-[4\sqrt{6}]/15|=8/5`
`<=>[(x=[24+4\sqrt{6}]/15 (t//m)),(x=[-24+4\sqrt{6}]/15(ko t//m)):}`
\(\text{Δ}=\left(-3\right)^2-4\cdot\left(2m+1\right)\)
=9-8m-4=-8m+5
Để phương trình có nghiệm kép thì -8m+5=0
hay m=5/8
Pt trở thành \(x^2-3x+\dfrac{9}{4}=0\)
hay x=3/2
Giải pt chứa nhiều dấu trị tuyệt đối thì cần xét các khoảng giá trị.
Để xét các khoảng giá trị, ta căn cứ vào xét các khoảng mà tại đó dấu trị tuyệt đối có thể phá.
Ví dụ: Ta biết $|x-a|=x-a$ nếu $x\geq a$ và $a-x$ nếu $x< a$
Do đó, khi gặp phải pt:
$|x-1|+|x+1|=3x-5$ chả hạn. Ta thấy:
$|x-1|=x-1$ nếu $x\geq 1$ và $1-x$ nếu $x< 1$
$|x+1|=x+1$ nếu $x\geq -1$ và $-x-1$ nếu $x< -1$
Như vậy, kết hợp cả 2 điều trên thì ta xét các khoảng sau:
TH1: $x\geq 1$
TH2: $-1\leq x< 1$
TH3: $x< -1$
Ta có:
\(x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=4\)
\(\left(x^2-2+\dfrac{1}{x^2}\right)+\left(y^2-2+\dfrac{1}{y^2}\right)+4=4\)
\(\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2=0\)
Vì \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{x}\right)^2\ge0\forall x\\\left(y-\dfrac{1}{y}\right)\ge0\forall y\end{matrix}\right.\)
Dấu "="⇔ \(\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\end{matrix}\right.\)
\(\Leftrightarrow x^2=y^2=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\x=y=-1\\x=1,y=-1\\x=-1,y=1\end{matrix}\right.\)
Thay vào phương trình 1
⇒ \(x=y=1\)
Câu 1:
1:
a: \(\dfrac{1}{2}x-3=0\)
=>\(\dfrac{1}{2}x=3\)
=>\(x=3:\dfrac{1}{2}=3\cdot2=6\)
b: \(3x^2-12x=0\)
=>\(3x\cdot x-3x\cdot4=0\)
=>\(3x\left(x-4\right)=0\)
=>x(x-4)=0
=>\(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
2:
a: Phương trình hoành độ giao điểm là:
\(\dfrac{1}{2}x^2=-x+\dfrac{3}{2}\)
=>\(x^2=-2x+3\)
=>\(x^2+2x-3=0\)
=>(x+3)(x-1)=0
=>\(\left[{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
Khi x=-3 thì \(y=\dfrac{1}{2}\cdot\left(-3\right)^2=\dfrac{1}{2}\cdot9=4,5\)
Khi x=1 thì \(y=\dfrac{1}{2}\cdot1^2=\dfrac{1}{2}\)
b: Gọi (d1): y=ax+b(a<>0) là phương trình đường thẳng cần tìm
Thay x=2 và y=2 vào (d), ta được:
\(a\cdot2+b=2\)
=>2a+b=2
=>b=2-2a
=>y=ax+2-2a
Phương trình hoành độ giao điểm là:
\(\dfrac{1}{2}x^2=ax+2-2a\)
=>\(\dfrac{1}{2}x^2-ax-2+2a=0\)
\(\text{Δ}=\left(-a\right)^2-4\cdot\dfrac{1}{2}\cdot\left(2a-2\right)\)
\(=a^2-2\left(2a-2\right)=a^2-4a+4=\left(a-2\right)^2\)
Để (P) tiếp xúc với (d1) thì Δ=0
=>a-2=0
=>a=2
=>b=2-2a=2-4=-2
Vậy: Phương trình đường thẳng cần tìm là y=2x-2
Nhìn trên hình bạn có thể thấy rõ các điểm đó là điểm (-1;1) và (2;4)
Nhưng trong trường hợp đề không cho hình thì ta làm như sau:
Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=x+2\)\(\Leftrightarrow x^2-x-2=0\)(*)
Xét pt (*) có \(\Delta=\left(-1\right)^2-4.1.\left(-2\right)=9>0\)
Vậy pt (*) có 2 nghiệm phân biệt \(\orbr{\begin{cases}x_1=\frac{-\left(-1\right)+\sqrt{9}}{2.1}=2\\x_2=\frac{-\left(-1\right)-\sqrt{9}}{2.1}=-1\end{cases}}\)
Khi \(x=2\Rightarrow y=x+2=2+2=4\)
Khi \(x=-1\Rightarrow y=x+2=-1+2=1\)
Vậy ta tìm được đúng các điểm (-1;1) và (2;4)