Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2.
-Hình bn tự vẽ nhé!
Bài làm:
a, Có F là trung điểm của AC (gt)
\(\Rightarrow\)AF=\(\dfrac{1}{2}\)AC (1)
Xét tam giác ABC ta có:
E là trung điểm của AB (gt)
G là trung điểm của BC (gt)
\(\Rightarrow\)EG là đường trung bình của tam giác ABC
\(\Rightarrow\)EG=\(\dfrac{1}{2}\)AC và EG song song với AC hay EG song song với AF (2)
Từ (1) và (2)\(\Rightarrow\)AEGF là hình bình hành.
mà góc A= 90 độ (gt)\(\Rightarrow\)AEGF là hình chữ nhật.
AEGF là hcn nên có AE song song với GF ( Tính chất hcn) hay EB song song với IF (3)
mà EI song song với BF (gt) (4)
Từ (3) và (4)\(\Rightarrow\)BFIE là hình bình hành.
b, Theo a, ta có: BFIE là hình bình hành nên BE=FI (tính chất hình bình hành) và AEGF là hình chữ nhật nên AE=GF (tính chất hình chữ nhật)
mà AE=EB (E là trung điểm của AB)
\(\Rightarrow\)GF=FI.
Xét tứ giác AGCI có: FA=FC (F là trung điểm của AC), GF=FI (cmt)
\(\Rightarrow\)AGCI là hình bình hành.
mà GI vuông góc với AC nên hình bình hành AGCI là hình thoi
c, Theo b, ta có: AGCI là hình thoi
Để tứ giác (hình thoi) AGCI là hình vuông thì góc AGC= 90 độ hay AG vuông góc với BC.
Khi đó AG là đường cao của tam giác ABC
Mặt khác AC là đường trung tuyến của tam giác ABC ( G lf trung điểm của BC)\(\Rightarrow\) Tam giác ABC cân tại A
mà tam giác ABC vuông tại (gt) nên tam giác ABC vuông cân tại A thì AGCI là hình vuông.
a) Xét tứ giác ABCD có:
. M là trung điểm của BC ( AM là đường trung tuyến)
. M là tđ của AD ( gt)
Vậy: ABCD là hbh ( tứ giác có 2 đường chéo cắt nhau tại tđ của mỗi đường)
mà \(\widehat{BAC}\) = 900 ( \(\Delta\) ABC vuông tại A)
--> ABCD là hình chữ nhật ( hbh có 1 góc vuông)
b) Ta có: \(IA\perp AC\)
\(CD\perp AC\)
\(\Rightarrow\) IA // CD
Xét tứ giác BIDC có:
. IA // CD (cmt)
\(\Rightarrow\) IB // CD ( B ϵ IA )
. AB =CD ( cạnh đối hcn ABCD )
mà AB = IB ( tính chất đối xứng)
\(\Rightarrow\) IB = CD ( cùng = AB )
Vậy: BIDC là hbh ( tứ giác có 2 cạnh đối vừa //, vừa = nhau)
\(\Rightarrow\) BC // ID ( cạnh đối hbh)
" đề câu c sai nha bạn"
A C B M H E D O I
Cm: a) Ta có: BA \(\perp\)AC (gt)
HD // AB (gt)
=> HD \(\perp\)AC => \(\widehat{HDA}=90^0\)
Ta lại có: AC \(\perp\)AB (gt)
HE // AC (gt)
=> HE \(\perp\)AB => \(\widehat{HEA}=90^0\)
Xét tứ giác AEHD có: \(\widehat{A}=\widehat{AEH}=\widehat{HDA}=90^0\)
=> AEHD là HCN => AH = DE
b) Gọi O là giao điểm của AH và DE
Ta có: AEHD là HCN => OE = OH = OD = OA
=> t/giác OAD cân tại O => \(\widehat{OAD}=\widehat{ODA}\) (1)
Xét t/giác ABC vuông tại A có AM là đường trung tuyến
-> AM = BM = MC = 1/2 BC
=> t/giác AMC cân tại M => \(\widehat{MAC}=\widehat{C}\)
Ta có: \(\widehat{B}+\widehat{C}=90^0\) (phụ nhau)
\(\widehat{C}+\widehat{HAC}=90^0\) (phụ nhau)
=> \(\widehat{B}=\widehat{HAC}\) hay \(\widehat{B}=\widehat{OAD}\) (2)
Từ (1) và (2) => \(\widehat{ODA}=\widehat{B}\)
Gọi I là giao điểm của MA và ED
Xét t/giác IAD có: \(\widehat{IAD}+\widehat{IDA}+\widehat{AID}=180^0\) (tổng 3 góc của 1 t/giác)
=> \(\widehat{AID}=180^0-\left(IAD+\widehat{IDA}\right)\)
hay \(\widehat{AID}=180^0-\left(\widehat{B}+\widehat{C}\right)=180^0-90^0=90^0\)
=> \(AM\perp DE\)(Đpcm)
c) (thiếu đề)
\(\text{GIẢI :}\)
A B C M D E
a) Xét \(\diamond\text{ADME}\) có \(DM\text{ }//\text{ }AB\), \(EM\text{ }//\text{ }AC\) \(\Rightarrow\text{ }\diamond\text{ADME}\) là hình bình hành.
b) Để hình bình hành ADME là hình thoi \(\Leftrightarrow\text{ }AM\) là tia phân giác của góc A.
Vậy M là giao điểm của tia phân giác góc A và cạnh BC thì ADME là hình thoi.
c) Để hình bình hành ADME là hình chữ nhật \(\Leftrightarrow\angle\text{A}=90^0\text{ }\Leftrightarrow\text{ }\bigtriangleup\text{ABC}\) vuông tại A.
Bài 1: Giải: Xét tam giác ACD có F,G lần lượt là trung điểm AC,DC nên FG là đường trung bình
\(\Rightarrow\)\(FG//AD\)
C/m tương tự đc \(EH//AD; GH//EF//BC\)
\(\Rightarrow EFGH\) là hình bình hành
a/Để EFGH là hình chữ nhật thì góc \(FGH=90^o\)
\(\Rightarrow góc HGD+góc FGC=90^o\)
Mà góc HGD=góc BCD;góc FGC= góc ADC ( góc đồng vị = nhau)
\(\Rightarrow\) góc BCD+góc ADC=\(90^o\)
\(\Rightarrow\)Để EFGH là hình chữ nhật thì tứ giác ABCD cần có góc BCD+góc ADC=\(90^o\)
b/Để EFGH là hình thoi thì FG=HG
Mà FG=1/2AD; HG=1/2BC
\(\Rightarrow\)AD=BC
\(\Rightarrow\)Để EFGH là hình thoi thì tứ giác ABCD có AD=BC
c/ để EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật vừa là hình thoi\(\Rightarrow \)ABCD phải có đủ cả 2 điều kiện trên
a) Xét ΔABC có
M là trung điểm của BC(AM là đường trung tuyến ứng với cạnh đáy BC trong ΔABC)
MQ//AB(gt)
Do đó: Q là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
\(\Rightarrow AQ=\frac{AC}{2}\left(1\right)\)
Xét ΔABC có
M là trung điểm của AM(AM là đường trung tuyến ứng với cạnh đáy BC trong ΔABC)
MP//AC(gt)
Do đó: P là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)
\(\Rightarrow AP=\frac{AB}{2}\left(2\right)\)
Ta có: ΔABC cân tại A(gt)
a có: ΔABC cân tại A(gt)
nên AB=AC(3)
Từ (1), (2) và (3) suy ra AP=AQ
Xét tứ giác APMQ có
MP//AQ(MP//AC, Q∈AC)
MQ//AP(MQ//AB, P∈AB)
Do đó: APMQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành APMQ có AP=AQ(cmt)
nên APMQ là hình thoi(Dấu hiệu nhận biết hình thoi)
b) Xét ΔABC có
P là trung điểm của AB(cmt)
Q là trung điểm của AC(cmt)
Do đó: PQ là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒PQ//BC và \(PQ=\frac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)