Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - 5x + 6
= x2 - 2x - 3x + 6
= ( x2 - 2x ) - ( 3x - 6 )
= x( x - 2 ) - 3( x - 2 )
= ( x - 3 )( x - 2 )
cách 1 : \(x^2\)\(-\)\(5x\)\(+\)\(6\)
\(=\)\(x^2\)\(-\)\(2x\)\(-\)\(3x\)\(+\)\(6\)
\(=\)\(\left(x^2-2x\right)-\left(3x-6\right)\)
\(=\)\(x\left(x-2\right)-3\left(x-2\right)\)
\(=\)\(\left(x-3\right)\left(x-2\right)\)
Cách 2 : \(x^2\)\(-\)\(5x\)\(+\)\(6\)
\(=\)\(x^2\)\(-\)\(4x\)\(+\)\(4\)\(-\)\(x\)\(+\)\(2\)
\(=\)\(\left(x-2\right)^2\)\(-\)\(\left(x-2\right)\)
\(=\)\(\left(x-2\right)\)\(\left(x-2-1\right)\)
\(=\)\(\left(x-2\right)\left(x-3\right)\)
Mình chỉ biết một cách thôi
x^2-5x+6
=x^2-2x-3x+6
=x(x-2)-3(x-2)
=(x-3)(x-2)
Ta có: x2 + 5x - 6
= x2 + 6x - x - 6
= x(x + 6) - (x + 6)
= (x - 1)(x + 6)
\(x^2+5x-6\)
\(=x^2+6x-x-6\)
\(=x.\left(x+6\right)-\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\)
\(x^2+5x-6=x^2-x+6x-6=x\left(x-1\right)+6\left(x-1\right)=\left(x+6\right)\left(x-1\right)\)
\(5x^2+5xy-x-y=5x\left(x+y\right)-\left(x+y\right)=\left(5x-1\right)\left(x+y\right)\)
\(7x-6x^2-2=3x-6x^2+4x-2=3x\left(1-2x\right)-2\left(1-2x\right)=\left(3x-2\right)\left(1-2x\right)\)
\(a,x^2+5x-6=x^2-x+6x-6\)
\(=x\left(x-1\right)+6\left(x-1\right)=\left(x-1\right)\left(x+6\right)\)
\(b,5x^2+5xy-x-y=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
\(c,7x-6x^2-2=-6x^2+3x+4x-2\)
\(=-3x\left(2x-1\right)+2\left(2x-1\right)=\left(2x-1\right)\left(2-3x\right)\)
\(x^2-5x+6\)
\(=x^2-2x-3x+6\)
\(=x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-3\right)\left(x-2\right)\)
\(27x^3-\frac{1}{27}\)
\(=\left(3x\right)^3-\left(\frac{1}{3}\right)^3\)
\(=\left(3x-\frac{1}{3}\right)\left(9x^2+x+\frac{1}{9}\right)\)
a, x^2 - 3x + 2
= x2 - 2x - x + 2
= (x2 - 2x) - (x - 2)
= x(x - 2) - (x - 2)
= (x - 1)(x - 2)
b, x^2 + 5x + 6
= x2 + 2x + 3x + 6
= x(x + 2) + 3(x + 2)
= (x + 3)(x + 2)
c, x^2 + x - 6
= x2 - 2x + 3x - 6
= x(x - 2) + 3(x - 2)
= (x + 3)(x - 2)
a) \(x^2-3x+2\)
\(=x^2-x-2x+2\)
\(=x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(x-2\right)\)
b)\(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+2\right)\left(x+3\right)\)
c)\(x^2+x-6\)
\(=x^2-2x+3x-6\)
\(=x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(x+3\right)\)
a) \(x^2-3x+2\)
= \(x^2-x-2x+2\)
\(=x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(x-2\right)\)
b) \(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+2\right)\left(x+3\right)\)
c) \(x^2+x-6\)
\(=x^2-2x+3x-6\)
\(=x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(x+3\right)\)
đầy đủ lại nè:
a/
2x^2+4x+2-2y^2
= [2x^2+4x+2] -2y^2
= 2.[x^2+2x+1] - 2.y^2
= 2. [x+1]^2 - 2. y^2
= 2. [x+1-y] [x+y+1]
b/
x^2+x-6 = x^2 - 2x + 3x -6 = x.[x-2] +3.[x-2] = [x+3] . [x-2]
c/
x^2+5x+6 = x^2 +2x +3 x + 6 = x.[x+2] + 3.[x+2] = [x+3].[x+2]
x2+5x+6
= x2 + 4x + 4 + x + 2
= (x2 + 4x +4) + x +2
= (x2 + 2.x.2 + 22) + (x + 2)
= (x+2)2 + (x+2)