Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(1-2m\right)^2-5m^2+4m-2\)
\(\Delta'=1-4m+4m^2-5m^2+4m-2\)
\(\Delta'=-m^2-1\le-1\)
Vậy phương trình luôn vô nghiệm do \(\Delta'< 0\forall m\)
Đặt \(a=x^2\left(a>=0\right)\)
pt trở thành \(a^2+\left(1-2m\right)a+m^2-1=0\)
\(\text{Δ}=\left(1-2m\right)^2-4\left(m^2-1\right)\)
\(=4m^2-4m+1-4m^2+4=-4m+5\)
a: Để pt vô nghiệm thì -4m+5<0
hay m>5/4
b: Để phương trình có hai nghiệm phân biệt thì -4m+5>0
hay m<5/4
c: Để pt có 4 nghiệm phân biệt thì
\(\left\{{}\begin{matrix}m< \dfrac{5}{4}\\-2m+1>0\\m^2-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m< -1\\\dfrac{1}{2}< m< 1\end{matrix}\right.\)
a) x4 + (1 - 2m)x2 + m2 - 1 = 0 (1)
Đặt t=x2 ta dc PT: t2+(1-2m)t+m2-1=0(2)
Để PT (1) thì PT(2) vô nghiệm:
Để PT(2) vô nghiệm thì: \(\Delta=\left(1-2m\right)^2-4.\left(m^2-1\right)<0\Leftrightarrow1-4m+4m^2-4m^2+4<0\)
<=>5-4m<0
<=>m>5/4
b)Để PT(1) có 2 nghiệm phân biệt thì PT(2) có duy nhất 1 nghiệm
Để PT(2) có duy nhất 1 nghiệm thì:
\(\Delta=5-4m=0\Leftrightarrow m=\frac{5}{4}\)
c)Để PT(1) có 4 nghiệm phân biệt thì PT(2) có 2 nghiệm phân biệt:
Để PT(2) có 2 nghiệm phân biệt thì:
\(\Delta=5-4m\ge0\Leftrightarrow m\le\frac{5}{4}\)
Mem đây ko rành lắm sai bỏ qua
\(mx^2-2\left(m+2\right)x+2m-1< 0\)
\(< =>mx^2-2\left(m+2\right)x+2m-1\ge0\)
\(a=m\ne0\)
\(\Delta=\left(2m+2\right)^2-4m\left(2m-1\right)\)
\(\Delta=4m^2+8m+4-8m^2+4m\)
\(\Delta=12m-4m^2+4\)
\(< =>\hept{\begin{cases}a>0\\\Delta\le0\end{cases}\hept{\begin{cases}m>0\\12m-4m^2+4\le0\end{cases}\hept{\begin{cases}m>0\\m=\left[\frac{3-\sqrt{13}}{2};\frac{3+\sqrt{13}}{2}\right]\end{cases}}}}\)
\(< =>m=(0;\frac{3+\sqrt{13}}{2}]\)
vậy m vô số nghiệm để bpt vô nghiệm
\(x^3-2\left(m+1\right)x^2-\left(2m+5\right)x+10+12m=0\)
<=> \(\left(x-2\right)\left(x^2-2mx-5-6m\right)=0\)
<=> \(\orbr{\begin{cases}x=2\\x^2-2mx-5-6m=0\left(1\right)\end{cases}}\)
Để phương trình ban đầu có 3 nghiệm phân biệt <=> phương trình (1) có 2 nghiệm phân biệt khác 2
<=> \(\hept{\begin{cases}\Delta'=m^2+5+6m>0\\2^2-2m.2-5-6m\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\in\left(-\infty;-5\right)v\left(-1;+\infty\right)\\m\ne-\frac{1}{10}\end{cases}}\)
a: TH1: m=1
Pt sẽ là -8x+1=0
hay x=1/8(nhận)
TH2: m<>1
\(\text{Δ}=\left(2m+6\right)^2-4\left(m-1\right)\left(-m+2\right)\)
\(=4m^2+24m+36+4\left(m^2-3m+2\right)\)
\(=4m^2+24m+36+4m^2-12m+8\)
\(=8m^2+12m+44\)
\(=4\left(3m^2+2m+11\right)>0\forall m\)
Do đó: PT luôn có hai nghiệm phân biệt
b: TH1: m=1
Pt sẽ là 3x+1=0
hay x=-1/3(loại)
TH2 m<>1
\(\text{Δ}=\left(3m\right)^2-4\left(m-1\right)\)
\(=9m^2-4m+4\)
\(=9\left(m^2-\dfrac{4}{9}m+\dfrac{4}{9}\right)\)
\(=9\left(m^2-2\cdot m\cdot\dfrac{2}{9}+\dfrac{4}{81}+\dfrac{32}{81}\right)\)
\(=9\left(m-\dfrac{2}{9}\right)^2+\dfrac{32}{9}>0\)
Do đó: PT luôn có hai nghiệm phânbiệt
Để pt có hai nghiệm dương phân biệt thì
\(\left\{{}\begin{matrix}\dfrac{-3m}{m-1}>0\\\dfrac{1}{m-1}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>1\\0< m< 1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Lời giải:
BPT $\Leftrightarrow x(m-1)< m-3$
Nếu $m>1$ thì BPT có nghiệm $x< \frac{m-3}{m-1}$
Nếu $m< 1$ thì BPT có nghiệm $x> \frac{m-3}{m-1}$
Nếu $m=1$ thì $0< -2$ (vô lý) nên BPT vô nghiệm
Vậy $m=1$ thì bpt vô nghiệm.