K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2019

bạn có thể trình bày chi tiết bài làm giúp mình không ?

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Phương trình \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 4,b = 3 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{4^2} + {3^2}}  = 5\)

Suy ra ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 5;0} \right),{F_2}\left( {5;0} \right)\)

Tọa độ các đỉnh: \(A(0;3),B(4;0),C(0; - 3),D( - 4;0)\)

Độ dài trục thực 8

Độ dài trục ảo 6

b) Phương trình \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{36}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 8,b = 6 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{8^2} + {6^2}}  = 10\)

Suy ra ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 10;0} \right),{F_2}\left( {10;0} \right)\)

Tọa độ các đỉnh: \(A(0;6),B(8;0),C(0; - 6),D( - 8;0)\)

Độ dài trục thực 16

Độ dài trục ảo 12

c) \({x^2} - 16{y^2} = 16 \Leftrightarrow \frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{1} = 1\)

Vậy ta có phương trình chính tắc của hypebol đã cho là \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{1} = 1\)

Suy ra \(a = 4,b = 1 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{4^2} + {1^2}}  = \sqrt {17} \)

Từ đó ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt {17} ;0} \right),{F_2}\left( {\sqrt {17} ;0} \right)\)

Tọa độ các đỉnh: \(A(0;1),B(4;0),C(0; - 1),D( - 4;0)\)

Độ dài trục thực 8

Độ dài trục ảo 2

d) \(9{x^2} - 16{y^2} = 144 \Leftrightarrow \frac{{{x^2}}}{{\frac{{144}}{9}}} - \frac{{{y^2}}}{{\frac{{144}}{{16}}}} = 1\)

Vậy ta có phương trình chính tắc của hypebol đã cho là \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\)

Suy ra \(a = 4,b = 3 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{4^2} + {3^2}}  = 5\)

Từ đó ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 5;0} \right),{F_2}\left( {5;0} \right)\)

Tọa độ các đỉnh: \(A(0;3),B(4;0),C(0; - 3),D( - 4;0)\)

Độ dài trục thực 8

Độ dài trục ảo 6

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Phương trình \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{36}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 10,b = 6 \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \sqrt {{{10}^2} - {6^2}}  = 8 \)

Suy ra ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 8;0} \right),{F_2}\left( {8;0} \right)\)

Tọa độ các đỉnh: \(A(0;6),B(10;0),C(0; - 6),D( - 10;0)\)

Độ dài trục lớn 20

Độ dài trục nhỏ 12

b) Phương trình \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1\) đã có dạng phương trình chính tắc \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) nên ta có: \(a = 5,b = 4 \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \sqrt {{5^2} - {4^2}}  = 3\)

Suy ra ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - 3;0} \right),{F_2}\left( {3;0} \right)\)

Tọa độ các đỉnh: \(A(0;4),B(5;0),C(0; - 4),D( - 5;0)\)

Độ dài trục lớn 10

Độ dài trục nhỏ 8

c) \({x^2} + 16{y^2} = 16 \Leftrightarrow \frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{1} = 1\)

Vậy ta có phương trình chính tắc của elip đã cho là \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{1} = 1\)

Suy ra \(a = 4,b = 1 \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \sqrt {{4^2} - {1^2}}  = \sqrt {15} \)

Từ đó ta có:

Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt {15} ;0} \right),{F_2}\left( {\sqrt {15} ;0} \right)\)

Tọa độ các đỉnh: \(A(0;1),B(4;0),C(0; - 1),D( - 4;0)\)

Độ dài trục lớn 8

Độ dài trục nhỏ 2

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Phương trình chính tắc của elip là: c) \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{25}} = 1\).

a) Không là PTCT vì a =b =8

b) Không là PTCT

d) Không là PTCT vì a =5 < b =8.

NV
25 tháng 4 2019

Do trục lớn gấp đôi trục bé \(\Rightarrow2a=2\left(2b\right)\Rightarrow a=2b\Rightarrow a^2=4b^2\)

Phương trình elip có dạng:

\(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\Leftrightarrow\frac{x^2}{4b^2}+\frac{y^2}{b^2}=1\)

Do \(A\left(2;-2\right)\in\left(E\right)\Rightarrow\frac{2^2}{4b^2}+\frac{\left(-2\right)^2}{b^2}=1\)

\(\Leftrightarrow\frac{1}{b^2}+\frac{4}{b^2}=1\Rightarrow\frac{5}{b^2}=1\Rightarrow b^2=5\Rightarrow a^2=4.5=20\)

Phương trình elip: \(\frac{x^2}{20}+\frac{y^2}{5}=1\)

1 tháng 8 2019

Elip (E) có tỉ số độ dài trục nhỏ và tiêu cự bằng 2 ⇒ 2 b 2 c = 2 ⇒ c = b 2 2 .

Mặt khác, 2 a 2 + 2 c 2 = 64 ⇔ a 2 + c 2 = 16 .

Ta có

c = b 2 2       a 2 + c 2 = 16 a 2 = b 2 + c 2 ⇒ a 2 + 1 2 b 2 = 16 a 2 − 3 2 b 2 = 0 ⇔ a 2 = 12 b 2 = 8

Phương trình chính tắc của Elip là E : x 2 12 + y 2 8 = 1 . 

Chọn A.

30 tháng 3 2017

a) Ta có: a2 = 25 => a = 5 độ dài trục lớn 2a = 10

b2 = 9 => b = 3 độ dài trục nhỏ 2a = 6

c2 = a2 – b2 = 25 - 9 = 16 => c = 4

Vậy hai tiêu điểm là : F1(-4 ; 0) và F2(4 ; 0)

Tọa độ các đỉnh A1(-5; 0), A2(5; 0), B1(0; -3), B2(0; 3).

b)

4x2 + 9y2 = 1 <=> + = 1

a2= => a = => độ dài trục lớn 2a = 1

b2 = => b = => độ dài trục nhỏ 2b =

c2 = a2 – b2

= - = => c =

F1(- ; 0) và F2( ; 0)

A1(-; 0), A2(; 0), B1(0; - ), B2(0; ).

c) Chia 2 vế của phương trình cho 36 ta được :

=> + = 1

Từ đây suy ra: 2a = 6. 2b = 4, c =\(\sqrt{5}\)

=> F1(-\(\sqrt{5}\) ; 0) và F2(\(\sqrt{5}\) ; 0)

A1(-3; 0), A2(3; 0), B1(0; -2), B2(0; 2).

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Những phương trình là phương trình chính tắc của (H) là: b), c), d).

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Chọn D.