Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mai cho bn đấy tui dg định off =))
a)\(11x+11y-x^2-xy\)
\(=\left(11x+11y\right)-\left(x^2+xy\right)\)
\(=11\left(x+y\right)-x\left(x+y\right)\)
\(=\left(11-x\right)\left(x+y\right)\)
b)\(x^2-xy-8x+8y\)
\(=\left(x^2-xy\right)-\left(8x-8y\right)\)
\(=x\left(x-y\right)-8\left(x-y\right)\)
\(=\left(x-8\right)\left(x-y\right)\)
c)\(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)
d)\(x^2+2xy+y^2-xz-yz\)
\(=\left(x^2+2xy+y^2\right)-\left(xz+yz\right)\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
a) \(11x+11y-x^2-xy\)
\(=11\left(x+y\right)-x\left(x+y\right)\)
\(=\left(x+y\right)\left(11-x\right)\)
b) \(x^2-xy-8x+8y\)
\(=x\left(x-y\right)-8\left(x-y\right)\)
\(=\left(x-y\right)\left(x-8\right)\)
c) \(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-3-y\right)\left(x-3+y\right)\)
d) \(x^2+2xy+y^2-xz-yz\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
A/\(4x^2-12+9\)
\(=\left(2x\right)^2-2.2.3+3^2\)
\(=\left(2x+3\right)^2\)
B/\(11x+11y-x^2-xy\)
\(=\left(11x-x^2\right)+\left(11y-xy\right)\)
\(=x\left(11-x\right)+y\left(11-x\right)\)
\(=\left(11-x\right)\left(x+y\right)\)
C/\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)
a) \(x^2-xy+x-y\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x-1\right)\left(x-y\right)\)
b) \(3x^2+6xy+3y^2-3z^2\)
\(=3\left(x^2+2xy+y^2-z^2\right)\)
\(=3\left[\left(x^2+2xy+y^2\right)-z^2\right]\)
\(=3\left[\left(x+y\right)^2-z^2\right]\)
\(=3\left(x+y+z\right)\left(x+y-z\right)\)
a) \(xy+xz+3y+3z=x\left(y+z\right)+3\left(y+z\right)=\left(x+3\right)\left(y+z\right)\)
b) \(xy-xz+y-z=x\left(y-z\right)+\left(y-z\right)\left(x+1\right)\left(y-z\right)\)
c) \(15x+15y-x^2-xy=15\left(x+y\right)-x\left(x+y\right)=\left(15-x\right)\left(x+y\right)\)
d) \(x^2-xy-10x+10y=x\left(x-y\right)-10\left(x-y\right)=\left(x-10\right)\left(x-y\right)\)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Bài 1:
a) \(11x+11y-x^2-xy\)
\(=\left(11x+11y\right)-\left(x^2+xy\right)\)
\(=11.\left(x+y\right)-x.\left(x+y\right)\)
\(=\left(x+y\right).\left(11-x\right)\)
b) \(x^2-xy-8x+8y\)
\(=\left(x^2-xy\right)-\left(8x-8y\right)\)
\(=x.\left(x-y\right)-8.\left(x-y\right)\)
\(=\left(x-y\right).\left(x-8\right)\)
Chúc bạn học tốt!
a) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)
\(=x^2y+xy^2+xyz+x^2z+xz^2+xyz+y^2z+yz^2\)
\(=xy\left(x+y+z\right)+xz\left(x+z+y\right)+yz\left(y+z\right)\)
\(=\left(x+y+z\right)\left(xy+xz\right)+yz\left(y+z\right)\)
\(=x\left(x+y+z\right)\left(y+z\right)+yz\left(y+z\right)\)
\(=\left(y+z\right)\left(x^2+xy+xz+yz\right)\)
\(=\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]=\left(y+z\right)\left(x+y\right)\left(x+z\right)\)
b) \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+3xyz\)
\(=\left(x^2y+xy^2+xyz\right)+\left(x^2z+xz^2+xyz\right)+\left(y^2z+yz^2+xyz\right)\)
\(=xy\left(x+y+z\right)+xz\left(x+z+y\right)+yz\left(y+z+x\right)\)
\(=\left(x+y+z\right)\left(xy+xz+yz\right)\)
P/s: Sai sót xin bỏ qua.
Ý a có rì đó sai sai nha bn
\(x^2-xy+x^2y-xy^2=x\left(x-y\right)+xy\left(x-y\right)=\left(x-y\right)\left(y+1\right)x\)
\(xy+3z+xz+3y\)
\(=\left(xy+3y\right)+\left(xz+3z\right)\)
\(=y\left(x+3\right)+z\left(x+3\right)\)
\(=\left(y+z\right)\left(x+3\right)\)
\(11x-x^2+11y-xy\)
\(=x\left(11-x\right)+y\left(11-x\right)\)
\(=\left(x+y\right)\left(11-x\right)\)
\(xy+3z+xz+3y\)
\(=\left(xy+xz\right)+\left(3y+3z\right)\)
\(=x\left(y+z\right)+3\left(y+z\right)\)
\(=\left(y+z\right)\left(x+3\right)\)
\(11x-x^2+11y-xy\)
\(=\left(11x+11y\right)-\left(x^2+xy\right)\)
\(=11\left(x+y\right)-x\left(x+y\right)\)
\(=\left(x+y\right)\left(11-x\right)\)