Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
\(ab(a-b)+bc(b-c)+ca(c-a)=ab(a-b)-bc(c-b)+ca(c-a)\)
\(=ab(a-b)-bc[(a-b)+(c-a)]+ca(c-a)\)
\(=ab(a-b)-bc(a-b)-bc(c-a)+ca(c-a)\)
\(=(a-b)(ab-bc)+(c-a)(ca-bc)\)
\(=(a-b)b(a-c)-(a-c).c(a-b)\)
\(=(a-b)(a-c)(b-c)\)
b)
\(a^2(b-c)+b^2(c-a)+c^2(a-b)\)
\(=a^2(b-c)-b^2[(b-c)+(a-b)]+c^2(a-b)\)
\(=a^2(b-c)-b^2(b-c)-b^2(a-b)+c^2(a-b)\)
\(=(b-c)(a^2-b^2)-(b^2-c^2)(a-b)\)
\(=(b-c)(a-b)(a+b)-(b-c)(b+c)(a-b)\)
\(=(b-c)(a-b)(a+b-b-c)=(b-c)(a-b)(a-c)\)
c)
\(a^2(a+1)-b^2(b-1)+ab-3ab(a-b+1)\)
\(=a^3+a^2-b^3+b^2+ab-3ab(a-b)-3ab\)
\(=(a^3-3a^2b+3ab^2-b^3)+(a^2+b^2+ab-3ab)\)
\(=(a-b)^3+(a-b)^2=(a-b)^2(a-b+1)\)
Nhiều quá làm 1 bài tiêu biểu thôi nhé:
a/ \(A=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
\(=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)}\)
\(=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(c+a\right)\left(b+c\right)\left(a+b\right)\left(c+a\right)\left(b+c\right)}=1\)
a: \(=a^2b-ab^2+b^2c-bc^2+c^2a-ca^2\)
\(=a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)+c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(ab-ac+b^2-bc+c^2\right)\)
b: \(=b^2c+bc^2+ac^2-a^2c-a^2b-ab^2\)
\(=b^2\left(c-a\right)+b\left(c^2-a^2\right)+ac\left(c-a\right)\)
\(=\left(c-a\right)\left(b^2+ac+b\left(c+a\right)\right)\)
\(=\left(c-a\right)\left(b^2+ac+bc+ba\right)\)
\(=\left(c-a\right)\left(b+c\right)\left(b+a\right)\)
#)Giải :
a)\(ab\left(b-a\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=a\left(a-b\right)+b^2c-bc^2+ac^2-a^2c\)
\(=ab\left(a-b\right)-\left(a-b\right)\left(a+b\right)c+c^2\left(a-b\right)\)
\(=\left(ab-ac-bc+c^2\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
b) \(a^2\left(b-c\right)-b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(a^2-b^2\right)\left(b-c\right)-\left(b^2-c^2\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)-\left(b-c\right)\left(b+c\right)\left(a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)