Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(A=\sqrt{3+\sqrt{8}}\)
=> \(\sqrt{2}A=\sqrt{6+2\sqrt{8}}=\sqrt{\left(2+\sqrt{2}\right)^2}=2+\sqrt{2}=\sqrt{2}\left(\sqrt{2+1}\right)\)
=> \(A=\sqrt{2}+1\)
\(3+\sqrt{18}+\sqrt{3+\sqrt{8}}=3+3\sqrt{2}+\sqrt{2}+1\)
\(=3\left(\sqrt{2}+1\right)+\left(\sqrt{2}+1\right)=4.\left(\sqrt{2}+1\right)\)
1/ \(x-6\sqrt{x}-8=\left(\sqrt{x}-3+\sqrt{17}\right)\left(\sqrt{x}-3-\sqrt{17}\right)\)
2/ Bài này làm gì còn phân tích được nữa.
\(a,\sqrt{mn}+1+\sqrt{m}+\sqrt{n}\)
\(=\sqrt{mn}+\sqrt{m}+\sqrt{n}+1\)
\(=\sqrt{m}\left(\sqrt{n}+1\right)+\sqrt{n}+1\)
\(=\left(\sqrt{n}+1\right)\left(\sqrt{m}+1\right)\)
\(b,a+b-2\sqrt{ab}-25\)
\(=\left(\sqrt{a}-\sqrt{b}\right)^2-5^2\)
\(=\left(\sqrt{a}-\sqrt{b}-5\right)\left(\sqrt{a}-\sqrt{b}+5\right)\)
\(c,m-2\sqrt{m}-3\)
\(=m-2\sqrt{m}+1-4\)
\(=\left(\sqrt{m}-1\right)^2-2^2\)
\(=\left(\sqrt{m}-1+2\right)\left(\sqrt{m}-1-2\right)\)
\(=\left(\sqrt{m}+1\right)\left(\sqrt{m}-3\right)\)
\(d,a+6\sqrt{a}+8\)
\(=a+6\sqrt{a}+9-1\)
\(=\left(\sqrt{a}+3\right)^2-1\)
\(=\left(\sqrt{a}+3+1\right)\left(\sqrt{a}+3-1\right)\)
\(=\left(\sqrt{a}+4\right)\left(\sqrt{a}+2\right)\)
\(e,\sqrt{m}-m^2=\sqrt{m}\left[1-\left(\sqrt{m}\right)^3\right]\)
\(=\sqrt{m}\left(1-\sqrt{m}\right)\left(1+\sqrt{m}+m\right)\)
\(f,p^2+\sqrt{p}=\sqrt{p}\left[\left(\sqrt{p}\right)^3+1\right]\)
\(=\sqrt{p}\left(\sqrt{p}+1\right)\left(p-\sqrt{p}+1\right)\)
=.= hok tốt !!
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) (\(\sqrt{16}=2\sqrt{4}\))
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}+\frac{\sqrt{2}.\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)