K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

a, \(x^3-x+3x^2y+3xy^2+y^3-y\)

= \((x^3+3x^2y+3xy^2+y^3)-x-y\)

= \(\left(x+y\right)^3-\left(x+y\right)\)

= \(\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

= \(\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

29 tháng 11 2018

x3-x+3x2y+3xy2+y3-y

=x2(x-1)+3(x2y+xy2)+y2(y-1)

=x2(x-1)+3(x2.y+y2.x)+y2(y-1)

=x2(x-1)+3{[x(x+1)+y(y+1)]}+y2(y-1)

=x2(x-1)+3.x(x+1)+3.y(y+1)+y2(y-1)

=x2(x-1)+2x2+3.x(x+1)+3.y(y+1)+y2(y-1)+2y2-2x2-2y2

=x2(x+1)+3.x(x+1)+3.y(y+1)+y2(y+1)-2x2-2y2

=(x2+3)(x+1)+(y2+3)(y+1)-2(x2+y2)

29 tháng 11 2018

ta có : (x*3+3x*2y+3xy*2+y*3)-(x+y)

=(x+y)*3-(x+y)

=(x+y)((X+Y)*2-1)

(x+y)(x+y+1)(x+Y-1)

10 tháng 8 2016

a.\(x^2\left(x^2+2x+1\right)\)

   \(x^2\left(x+1\right)^2\)

23 tháng 7 2016

1/a ) = (x+y)3 -(x+y)

= (x+y)[(x+y)2+1]

c) = 5(x2-xy+y2)-20z2

=5(x-y)2-20z2

= 5 [ (x-y)2- 4z2 ]

=5(x-y-4z)(x-y+4z)
 

23 tháng 7 2016

Bài 1:

a) x3-x+3x2y+3xy2+y3-y

=x3+2x2y-x2+xy2-xy+x2y+2xy2-xy+y3-y2+x2+2xy-x+y2-y

=x(x2+2xy-x+y2-y)+y(x2+2xy-x+y2-y)+(x2+2xy-x+y2-y)

=(x2+2xy-x+y2-y)(x+y+1)

=[x(x+y-1)+y(x+y-1)](x+y+1)

=(x+y-1)(x+y)(x+y+1) 

c) 5x2-10xy+5y2-20z2

=-5(2xy-y2+4z2-2)

Bài 2:

5x(x-1)=x-1   

=>5x2-6x+1=0

=>5x2-x-5x+1

=>x(5x-1)-(5x-1)

=>(x-1)(5x-1)=0

=>x=1 hoặc x=1/5

b) 2(x+5)-x2-5x=0

=>2(x+5)-x(x+5)=0

=>(2-x)(x+5)=0

=>x=2 hoặc x=-5

23 tháng 7 2016

1) 

a) (x+y)3-(x+y)= (x+y)(x+y-1)

b) xem lại đề câu B nha bạn

2)

a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc=0

(a+b)3+c3-3ab(a+b+c)=0

(a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c)=0

(a+b+c)(a2+b2+c2-xy-yz-xz)=0

Suy ra: a3+b3+c3=3abc

 

7 tháng 10 2016

1. a) = (x+y)3 -(x+y) =(x+y)((x+y)2 -1)

     = (x+y)(x+y+1)(x+y-1)

b) = 5(( x-y)2 - 4z2)

     = 5( x-y +2z)(x-y-2z)

2. áp dụng ( a+b+c)3 = .....rồi biến đổi

     

11 tháng 6 2019

Phân tích đa thức thành nhân tử:(em làm luôn đấy,ko ghi lại đề)

\(\left(x^3+y^3\right)-\left(x+y\right)+3xy\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)+3xy\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)\(=\left(x+y\right)\left[\left(x+y\right)^2-1^2\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

11 tháng 6 2019

\(8x^3+12x^2+6x+1=0.\)

\(\Leftrightarrow\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3=0\)

\(\Leftrightarrow\left(2x+1\right)^3=0\)

\(\Leftrightarrow2x+1=0\)

\(\Leftrightarrow x=-\frac{1}{2}\)

\(2x^2+5x-3=0\Leftrightarrow\left(2x^2+6x\right)+\left(-x-3\right)=0\)

\(\Leftrightarrow2x\left(x+3\right)-\left(x+3\right)=0\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=-3\end{cases}}\)

\(x^2-2x-3=0\Leftrightarrow\left(x^2-3x\right)+\left(x-3\right)=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}.}\)

\(\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)

\(=5x-1+2\left(4+5x-20x-25x^2\right)+25x^2+40x+16\)

\(=25x^2+45x+15+8+10x-40x-50x^2\)

\(=-25x^2+15x+23\)

\(\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)

\(=\left(x-y\right)^3-\left(x-y\right)^3+\left(x+y\right)^3-3x^2y-3xy^2\)

\(=\left(x+y\right)^3-3x^2y-3xy^2\)

\(=x^3+3x^2y+3xy^2+y^3-3xy^2-3x^2y\)

\(=x^3+y^3\)

AH
Akai Haruma
Giáo viên
21 tháng 12 2018

a)

\(14x^2y-21xy^2+28x^2y^2\)

\(=7xy(2x-3y+4xy)\)

b) \(x(x+y)-5x-5y=x(x+y)-5(x+y)=(x-5)(x+y)\)

c)

\(10x(x-y)-8(y-x)=10x(x-y)+8(x-y)\)

\(=(x-y)(10x+8)=2(x-y)(5x+4)\)

21 tháng 12 2018

a. \(14x^2y-21xy^2+28x^2y^2\)

\(=7xy\left(2x-3y+4xy\right)\)

b. \(x\left(x+y\right)-5x-5y\)

\(=x\left(x+y\right)-5\left(x+y\right)\)

\(=\left(x-5\right)\left(x+y\right)\)

c. \(10x\left(x-y\right)-8\left(y-x\right)\)

\(=10x\left(x-y\right)+8\left(x-y\right)\)

\(=\left(10x+8\right)\left(x-y\right)\)

d. \(\left(3x+1\right)^2-\left(x+1\right)^2\)

\(=\left(3x+1+x+1\right)\left(3x+1-x-1\right)\)

\(=2x\left(4x+2\right)\)

\(=4x\left(2x+1\right)\)

e. Vì bài này giải không ra nên mình nghĩ nó sai đề, sửa lại tí nhé!

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz+zy+z^2-3xy\right)\)

g. \(5x^2-10xy+5y^2-20z^2\)

\(=5\left(x^2-2xy+y^2-4z^2\right)\)

\(=5\left[\left(x-y^2\right)-4z^2\right]\)

\(=5\left(x-y+z\right)\left(x-y-z\right)\)

h. \(x^3-x+3x^2y+3xy^3+y^3-y\)

\(=\left(x^3+3x^2y+3xy^2+y^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

i. \(x^2+7x-8\)

\(=x^2-x+8x-8\)

\(=x\left(x-1\right)+8\left(x-1\right)\)

\(=\left(x+8\right)\left(x-1\right)\)

1)\(5x^2-10xy+5y^2-20z^2\)

\(\Leftrightarrow5\left(x^2-2xy+y^2\right)-20z^2\)

\(\Leftrightarrow5\left(x-y\right)^2-20z^2\)

\(\Leftrightarrow5\left[\left(x-y\right)^2-4z^2\right]\)

\(\Leftrightarrow5\left[\left(x-y-2z\right)\left(x-y+2z\right)\right]\)

\(\Leftrightarrow5\left(x-y-2z\right)\left(x-y+2z\right)\)

hok tốt

2)\(x^3-x+3x^2y+3xy^2+y^3-y\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3-y-x\)

\(\Leftrightarrow\left(x+y\right)^3-\left(x+y\right)\)

\(\Rightarrow\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(\Leftrightarrow\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)

hok tốt

19 tháng 10 2022

1: \(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)

3: \(=18\left(m^2-2mn+n^2-4p^2\right)\)

\(=18\left(m-n-2p\right)\left(m-n+2p\right)\)

4: \(=9\left(a^2-2ab+b^2-4c^2\right)\)

\(=9\left(a-b-2c\right)\left(a-b+2c\right)\)

5: \(=\left(x-3y\right)\left(5a-8b\right)\)

6: \(=7\left(x^2-2xy+y^2-z^2\right)\)

\(=7\left(x-y-z\right)\left(x-y+z\right)\)