Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+4x^2+4x-16y^2\)
\(=\left(x^3+2x^2\right)+\left(2x^2+4x\right)-16y^2\)
\(=x^2.\left(x+2\right)+2x.\left(x+2\right)-16y^2\)
\(=\left(x+2\right).\left(x^2+2x\right)-16y^2\)
\(=x.\left(x+2\right).\left(x+2\right)-\left(4y\right)^2\)
\(=x.\left(x+2\right)^2-\left(4y\right)^2\)
\(=\left[\sqrt{x}.\left(x+2\right)\right]^2-4y^2\)
\(=\left[\sqrt{x}.\left(x+2\right)-4y\right].\left[\sqrt{x}.\left(x+2\right)+4y\right]\)
Tham khảo nhé~
nếu đưa vô căn phải có điều kiện là x > 0
\(x^3+4x^2+4x-16y^2=x\left(x+2\right)^2-\left(4y\right)^2\)
\(=\left(x\sqrt{x}+2\sqrt{x}\right)^2-\left(4y\right)^2=\left(x\sqrt{x}+2\sqrt{x}-4y\right)\left(x\sqrt{x}+2\sqrt{x}+4y\right)\)
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a) = ( 4x2 + 4x + 1 ) - y2
= ( 2x +1)2 - y2
= ( 2x + 1 - y) ( 2x + 1+ y )
b) = ( x3 + y3) - ( x + y)
= (x + y) (x2+xy+y2) - (x + y)
= ( x +y ) (x2 + xy + y2 - 1 )
a) 4x2 -(y2+4x+1)=(2x)2-(y+1)2+(2x+y+1)(2x-y+1)
b) x3-x+y3-y=(x3-x)(y3-y)+x(x2-1)+y(y2-1)
Tớ chưa chắc câu B0 đúng đâu nhé :)))
6, (x^2 +1) -4x^2 = x^2 + 1 - 4x^2 = 1 - (4x^2 - x^2) = 1 - 3x^2 = (1-\(\sqrt{3}\)x)(1+\(\sqrt{3}\)x)
7, x^2 - 4x -5 = x^2 - 2.x.2 + 4 - 9 = (x^2 - 2.x.2 +4) - 3^2 = (x-2)^2 - 3^2 = (x-2-3)(x-2+3) = (x-5)(x+1)
8, x^5 - 3x^4 + 3x^3 - x^2 = x^2(x^3 -3x^2 + 3x -1) = x^2(x-1)^3
Ta có: ( 4x + 1)(12x - 1)(3x + 2)(x+1) - 4
= [(4x+1)(3x+2)]. [(12x-1)(x+1)] - 4 = (12x2 +11x + 2)(12x2 + 11x - 1) - 4
Đặt a = 12x2 + 11x - 1. Thay vào biểu thức ta có:
(a+3).a - 4 = a2 + 3a - 4 =a2 + 4a - a - 4 = a(a+4) - (a+4)
= (a+4)(a-1)
=> (4x+1)(12x-1)(3x+2)(x+1) - 4 = (12x2 + 11x + 3)(12x2+11x - 2)
(1+x2)2−4x(1−x2)
= \(-\left(1-x^2\right)^2-4x\left(1-x^2\right)\)
đặt \(\left(1-x^2\right)\)= a
ta có :
- a . a - 4x .a
= a ( - a - 4x )
thay a = \(\left(1+x^2\right)\) ta có
\(\left(1+x^2\right)\left(1-x^2-4x\right)\)
phân tích tiếp nhé !
\(\left(1+x^2\right)^2-4x\left(1-x^2\right)=1+2x^{ }+x^4-4x+4x^3\)\(=\left(x^4+2x^3-x^2\right)+\left(2x^3+4x^2-2x\right)-x^2-2x+1=x^2\left(x^2+2x-1\right)+2x\left(x^2+x-1\right)-\left(x^2+2x-1\right)\)\(\left(x^2+2x-1\right)\left(x^2+2x-1\right)=\left(x^2+2x-1\right)^2\)
Làm theo kiểu PP số 7 nhé bạn
\(x^3-3x^2+4x-2\)
\(=x^3-x^2-2x^2+2x+2x-2\)
\(=x^2-\left(x-1\right)-2x\left(x-1\right)+2\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-2x+2\right)\)
cái này hay nha
nhưng mik chỉ bik đáp án
\(=\left(x-1\right)\left(x^2-2x+2\right)\)
\(=-\left(4x^2-4x+1\right)=-\left(2x-1\right)^2\)
.