K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2016

a, \(x^6-x^4-9x^3+9x^2\)

\(x^4\left(x^2-1\right)-9x^2\left(x-1\right)\)

=\(x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)

\(\left(x-1\right)\left(x^4\left(x+1\right)-9x^2\right)\)

\(\left(x-1\right)\left(x^5+x-9x^2\right)\)

b, \(x^4-4x^3+8x^2-16x+16\)

\(x^4-4x^3+4x^2+4x^2-16x+16\)

\(=x^2\left(x^2-4x+4\right)+4\left(x^2-4x+4\right)\)

\(=\left(x^2+4\right)\left(x-2\right)^2\)

c, \(\left(xy+4\right)^2-4\left(x+y\right)^2\)

\(\left(xy+4\right)^2-\left(2\left(x+y\right)\right)^2\)

\(\left(xy-2x-2y+4\right)\left(xy+2x+2y+4\right)\)

\(\left(x\left(y-2\right)-2\left(y-2\right)\right)\left(x\left(y+2\right)+2\left(y+2\right)\right)\)

=\(\left(x-2\right)\left(y-2\right)\left(x+2\right)\left(y+2\right)\)

d, \(\left(a+b+c\right)^2+\left(a-b+c\right)^2-4b^2\)

\(a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2-2ab+2ac-2bc-4b^2\)

=\(2a^2+2b^2+2c^2+4ac-4b^2\)

8 tháng 10 2016

đề bài ???

8 tháng 10 2016

c)4x^4x^− x^− x = x*(4x^3 + 4x^2 - x -1)

24 tháng 10 2018

khong biet

24 tháng 10 2018

tui đếch bt vì tui mới hk lớp 5  thôi à

Phân tích các đa thức sau thành nhân tử: * \(x^3-7x+6\) * \(x^3-9x^2+6x+16\) * \(x^3-6x^2-x+30\) * \(2x^3-x^2+5x+3\) * \(27x^3-27x^2+18x-4\) * \(x^2+2xy+y^2-x-y-12\) * \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\) * \(4x^4-32x^2+1\) * \(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\) * \(64x^4+y^4\) * \(a^6+a^4+a^2b^2+b^4-b^6\) * \(x^3+3xy+y^3-1\) * \(4x^4+4x^3+5x^2+2x+1\) * \(x^8+x+1\) * \(x^8+3x^4+4\) * \(3x^2+22xy+11x+37y+7y^2+10\) *...
Đọc tiếp

Phân tích các đa thức sau thành nhân tử:

* \(x^3-7x+6\)

* \(x^3-9x^2+6x+16\)

* \(x^3-6x^2-x+30\)

* \(2x^3-x^2+5x+3\)

* \(27x^3-27x^2+18x-4\)

* \(x^2+2xy+y^2-x-y-12\)

* \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

* \(4x^4-32x^2+1\)

* \(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)

* \(64x^4+y^4\)

* \(a^6+a^4+a^2b^2+b^4-b^6\)

* \(x^3+3xy+y^3-1\)

* \(4x^4+4x^3+5x^2+2x+1\)

* \(x^8+x+1\)

* \(x^8+3x^4+4\)

* \(3x^2+22xy+11x+37y+7y^2+10\)

* \(x^4-8x+63\)

* \(\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)

* \(xy\left(x+y\right)-yz\left(y+z\right)+xz\left(x-z\right)\)

* \(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)

* \(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)

* \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab^2+c^3-3abc\)

* \(\left(a+b+c\right)^3-a^3-b^3-c^3=[\left(a+b\right)c]^3-a^3-b^3-c^3\)

* \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\([\) Các bạn làm được bài nài thì làm giúp mk với nha,làm vài câu cũng được\(]\)

Mk mệt quá rồi làm giúp mk với nha

3
4 tháng 12 2017

\(1,x^3-7x+6\)

\(=x^3+3x^2-3x^2-9x+2x+6\)

\(=x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-3x+2\right)\)

\(=\left(x+3\right)\left(x^2-2x-x+2\right)\)

\(=\left(x+3\right)\left(x-2\right)\left(x-1\right)\)

\(2,x^3-9x^2+6x+16\)

\(=x^3+x^2-10x^2-10x+16x+16\)

\(=x^2\left(x+1\right)-10x\left(x+1\right)+16\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-10x+16\right)\)

\(=\left(x+1\right)\left(x^2-2x-8x+16\right)\)

\(=\left(x+1\right)\left(x-8\right)\left(x-2\right)\)

4 tháng 12 2017

mk ms lm hai câu thôi mà đã mệt r , bh mk lm bt mai đi học ,lúc khác lm đ cko bn

25 tháng 3 2020

1.\(A=\frac{2x^2-16x+41}{x^2-8x+22}\) \(=\frac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\frac{3}{\left(x-4\right)^2+6}\ge\frac{1}{2}\)

Dấu '' = '' xảy ra khi x = 4.

Vậy MinA= \(\frac{1}{2}\) tại x = 4.

25 tháng 3 2020

b. Câu hỏi của bảo ngọc - Toán lớp 8 | Học trực tuyến

a: \(=\dfrac{27a^6b^3\cdot a^2b^6}{a^8b^8}=27b\)

b: \(=3y^2-5x^2y^3-2y^2+3x^2y^3\)

\(=y^2-2x^2y^3\)

c: \(=6x-y+2x^2+3y-2x^2+x\)

\(=7x+2y\)

d: \(=x-y+2y^2-6xy+\dfrac{10x^2}{y}\)

Bài 1: Thực hiện phép tính a, \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}\)+\(\dfrac{2}{x^2+3}\)+\(\dfrac{1}{x+1}\) b, \(\dfrac{x+y}{2\left(x-y\right)}\)-\(\dfrac{x-y}{2\left(x+y\right)}\)+\(\dfrac{2y^2}{x^2-y^2}\) c, \(\dfrac{x-1}{x^3}\)-\(\dfrac{x+1}{x^3-x^2}\)+\(\dfrac{3}{x^3-2x^2+x}\) d, \(\dfrac{xy}{ab}\)+\(\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}\)-\(\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\) e,...
Đọc tiếp

Bài 1: Thực hiện phép tính

a, \(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}\)+\(\dfrac{2}{x^2+3}\)+\(\dfrac{1}{x+1}\)

b, \(\dfrac{x+y}{2\left(x-y\right)}\)-\(\dfrac{x-y}{2\left(x+y\right)}\)+\(\dfrac{2y^2}{x^2-y^2}\)

c, \(\dfrac{x-1}{x^3}\)-\(\dfrac{x+1}{x^3-x^2}\)+\(\dfrac{3}{x^3-2x^2+x}\)

d, \(\dfrac{xy}{ab}\)+\(\dfrac{\left(x-a\right)\left(y-a\right)}{a\left(a-b\right)}\)-\(\dfrac{\left(x-b\right)\left(y-b\right)}{b\left(a-b\right)}\)

e, \(\dfrac{x^3}{x-1}\)-\(\dfrac{x^2}{x+1}\)-\(\dfrac{1}{x-1}\)+\(\dfrac{1}{x+1}\)

f, \(\dfrac{x^3+x^2-2x-20}{x^2-4}\)-\(\dfrac{5}{x+2}\)+\(\dfrac{3}{x-2}\)

g, \(\left\{\dfrac{x-y}{x+y}+\dfrac{x+y}{x-y}\right\}\).\(\left\{\dfrac{x^2+y^2}{2xy}\right\}\).\(\dfrac{xy}{x^2+y^2}\)

h, \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}\)+\(\dfrac{1}{\left(b-c\right)\left(c-a\right)}\)+\(\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)

i, \(\dfrac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)

k, \(\left[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left\{\dfrac{x^2}{y}-\dfrac{y^2}{x}\right\}\right]\):\(\dfrac{x-y}{x}\)

Bài 2: Rút gọn các phân thức:

a, \(\dfrac{25x^2-20x+4}{25x^2-4}\)

b, \(\dfrac{5x^2+10xy+5y^2}{3x^3+3y^3}\)

c, \(\dfrac{x^2-1}{x^3-x^2-x+1}\)

d, \(\dfrac{x^3+x^2-4x-4}{x^4-16}\)

e, \(\dfrac{4x^4-20x^3+13x^2+30x+9}{\left(4x^2-1\right)^2}\)

Bài 3: Rút gọn rồi tính giá trị các biểu thức:

a, \(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\) với a = 4, b = -5, c = 6

b, \(\dfrac{16x^2-40xy}{8x^2-24xy}\) với \(\dfrac{x}{y}\) = \(\dfrac{10}{3}\)

c, \(\dfrac{\dfrac{x^2+xy+y^2}{x+y}-\dfrac{x^2-xy+y^2}{x-y}}{x-y-\dfrac{x^2}{x+y}}\) với x = 9, y = 10

Bài 4: Tìm các giá trị nguyên của biến số x để biểu thức đã cho cũng có giá trị nguyên:

a, \(\dfrac{x^3-x^2+2}{x-1}\)

b, \(\dfrac{x^3-2x^2+4}{x-2}\)

c, \(\dfrac{2x^3+x^2+2x+2}{2x+1}\)

d, \(\dfrac{3x^3-7x^2+11x-1}{3x-1}\)

e, \(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)

2
8 tháng 12 2017

Giúp mình nhé mọi người ! leuleu

8 tháng 12 2017

\(1.\)

\(a.\)

\(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)

\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2\left(x^2-1\right)}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{1\left(x-1\right)\left(x^2+3\right)}{\left(x^2-1\right)\left(x^2+3\right)}\)

\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{x^3-x^2+3x-3}{\left(x^2-1\right)\left(x^2+3\right)}\)

\(=\dfrac{8+2x^2-2+x^3-x^2+3x-3}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{x^3+x^2+3x+3}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{x^2\left(x+1\right)+3\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=\dfrac{\left(x^2+3\right)\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)

\(=x-1\)

\(b.\)

\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)

\(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{2\left(x^2-y^2\right)}-\dfrac{\left(x-y\right)^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{x^2+2xy+y^2}{2\left(x^2-y^2\right)}-\dfrac{x^2-2xy+y^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{4xy+4y^2}{2\left(x^2-y^2\right)}\)

\(=\dfrac{4y\left(x+y\right)}{2\left(x^2-y^2\right)}\)

\(=\dfrac{2y}{\left(x-y\right)}\)

Tương tự các câu còn lại

1. tính a) \(\left(\dfrac{2}{3}x-\dfrac{3}{2}y\right)^2\) b) \(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2\) c) \(\left(x+\dfrac{1}{5}y^2\right)\left(x-\dfrac{1}{5}y^2\right)\) d) \(\left(\dfrac{1}{2}x-2y\right)^3\) e) \(\left(-\dfrac{1}{2}xy^2+x\right)^3\) f) \(27x^3-8y^3\) g) 4(2x - 3y) - 4 - (2x-3y)2 2. rút gọn a) \(2m\left(5m+2\right)+\left(2m-3\right)\left(3m-1\right)\) b) \(\left(2x+4\right)\left(8x-3\right)-\left(4x+1\right)^2\) c)...
Đọc tiếp

1. tính

a) \(\left(\dfrac{2}{3}x-\dfrac{3}{2}y\right)^2\)

b) \(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2\)

c) \(\left(x+\dfrac{1}{5}y^2\right)\left(x-\dfrac{1}{5}y^2\right)\)

d) \(\left(\dfrac{1}{2}x-2y\right)^3\)

e) \(\left(-\dfrac{1}{2}xy^2+x\right)^3\)

f) \(27x^3-8y^3\)

g) 4(2x - 3y) - 4 - (2x-3y)2

2. rút gọn

a) \(2m\left(5m+2\right)+\left(2m-3\right)\left(3m-1\right)\)

b) \(\left(2x+4\right)\left(8x-3\right)-\left(4x+1\right)^2\)

c) \(\left(7y-2\right)^2-\left(7y+1\right)\left(7y-1\right)\)

d) \(\left(a+2\right)^3-a\left(a-3\right)^2\)

3. c/m các biểu thức sau ko phụ thuộc vào biến x,y

a) \(\left(2x-5\right)\left(2x+5\right)-\left(2x-3\right)^2-12x\)

b) \(\left(2y-1\right)^3-2y\left(2y-3\right)^2-6y\left(2y-2\right)\)

c) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(20+x^3\right)\)

d) \(3y\left(-3y-2\right)^2-\left(3y-1\right)\left(9y^2+3y+1\right)-\left(-6y-1\right)^2\)

4. Tìm x

a) \(\left(2x+5\right)\left(2x-7\right)-\left(-4x-3\right)^2=16\)

b) \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)

c) \(49x^2+14x+1=0\)

d) \(\left(x-1\right)^3-x\left(x-2\right)^2-\left(x-2\right)=0\)

5. c/m biểu thức luôn dương:

a) \(A=16x^2+8x+3\)

b) \(B=y^2-5y+8\)

c) C= \(2x^2-2x+2\)

d) \(D=9x^2-6x+25y^2+10y+4\)

6. Tìm GTLN và GTNN của các biểu thức sau

a) \(M=x^2+6x-1\)

b) \(N=10y-5y^2-3\)

7. thu gọn

a) \(\left(2+1\right)\left(2^2+1\right)\left(2^3+1\right)...\left(2^{32}+1\right)-2^{64}\)

b) \(\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{\text{64}}+3^{64}\right)+\dfrac{5^{128}-3^{128}}{2}\)

2
9 tháng 9 2017

Bạn đăng từ từ thôi!

Dài quá

8 tháng 7 2019

a) \(\left(x^2-x+2\right)^2+\left(x-2\right)^2\)

\(=\left(x^4-2x^3+5x^2-4x+4\right)+\left(x^2-4x+4\right)\)

\(=x^4-2x^3+6x^2-8x+8\)

\(=\left(x^4-2x^3+2x^2\right)+\left(4x^2-8x+8\right)\)

\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)\)

\(=\left(x^2+4\right)\left(x^2-2x+2\right)\)

8 tháng 7 2019

\(x^4-9x^3+28x^2-36x+16\)

\(=x^4-x^3-8x^3+8x^2+20x^2-20x-16x+16\)

\(=\left(x^4-x^3\right)-\left(8x^3-8x^2\right)+\left(20x^2-20x\right)-\left(16x-16\right)\)

\(=x^3\left(x-1\right)-8x^2\left(x-1\right)+20x\left(x-1\right)-16\left(x-1\right)\)

\(=\left(x-1\right)\left(x^3-8x^2+20x-16\right)\)

\(=\left(x-1\right)\left(x^3-2x^2-6x^2+12x+8x-16\right)\)

\(=\left(x-1\right)[x^2\left(x-2\right)-6x\left(x-2\right)+8\left(x-2\right)]\)

\(=\left(x-1\right)\left(x-2\right)\left(x^2-6x+8\right)\)

\(=\left(x-1\right)\left(x-2\right)\left(x^2-4x-2x+8\right)\)

\(=\left(x-1\right)\left(x-2\right)[x\left(x-4\right)-2\left(x-4\right)]\)

\(=\left(x-1\right)\left(x-2\right)\left(x-2\right)\left(x-4\right)\)

\(=\left(x-1\right)\left(x-2\right)^2\left(x-4\right)\)