K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2015

Ờ, lm nhanh, ẩu đoảng mà...

18 tháng 6 2017

3(x4+x+1)-(x2+x+1)2

=3(x2+x+1)(x2-x+1)-(x2+x+1)2

=(x2+x+1)[3(x2-x+1)-(x2-x+1)

=(x2+x+1)(3x2-3x+3-x2+x-1)

=(x2+x+1)(2x2-2x+2)

=(x2+x+1)2(x2-x+1)

18 tháng 6 2017

bạn vu cong thien làm sai rồi.

\(x^4+x^2+1=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

chứ không phải là:

\(x^4+x+1=\left(x^2+x+1\right)\left(x^2-x+1\right)\)đâu!

3 tháng 7 2019

\(x^8+3x^4+4\)

\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)

\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)

\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)

3 tháng 7 2019

\(4x^4+4x^3+5x^2+2x+1\)

\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)

\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)

\(=\left(2x^2+x+1\right)^2\)

27 tháng 12 2014

Ta có:\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2=3x^4+3x^2+3-x^4-x^2-1-2x^3-2x-2x^2\)

\(=2x^4-2x^3-2x+2=2x^3\left(x-1\right)-2\left(x-1\right)=2\left(x^3-1\right)\left(x-1\right)\)

\(=2\left(x-1\right)^2\left(x^2+x+1\right)\)

6 tháng 8 2017

(x+1)4+(x2+x+1)2=(x+1)2.(x+1)2+x4+x2+12=(x+1)2.(x+1)2+x4+(x+1)2=(x+1)2.[(x+1)2+x4]

6 tháng 8 2017

(x + 1)4 + (x2 + x + 1)2

= (x + 1)4 + x4 + 2.x2.(x + 1) + (x + 1)2

= (x + 1)4 + (x + 1)2 + x4 + 2x2(x + 1)

= (x + 1)2.[(x + 1)2 + 1] + x2.[x2 + 2(x + 1)]

= (x + 1)2.[x2 + 2x + 1 + 1] + x2.[x2 + 2x + 2]

= [(x + 1)2 + x2] . [x2 + 2x + 2]

= [x2 + 2x + 1 + x2] . [x2 + 2x + 2]

= [2x2 + 2x + 1] . [x2 + 2x + 2]

20 tháng 8 2017

\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)

\(=3\left(x^4+x^2+1\right)-\left(x^4+x^2+1+2x^3+2x^2+2x\right)\)

\(=\left(x^4+x^2+1\right)\left(3-2x^3-2x^2-2x\right)\)

\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)

\(=3\left(x^2+x+1\right)\left(x+x^2+x+1\right)\)

\(=3\left(x^2+x+1\right)\left(x^2+2x+1\right)\)

\(=3\left(x^2+x+1\right)\left(x+1\right)^2\)

17 tháng 8 2016

\(x^4+x^3+2x^2+x+1\)

\(=\left(x^4+2x^2+1\right)+x^3+x\)

\(=\left(x^2+1\right)^2+x\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+1+x\right)\)

18 tháng 9 2019

33+b3+c3-3abc