Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1
=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)
=(x3-x-1)(x2-x+1)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
\(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
a)x3+x2+4
=x3-x2+2x+2x2-2x+4
=x(x2-x+2)+2(x2-x+2)
=(x+2)(x2-x+2)
b)x3-2x-4
=x3+2x2+2x-2x2-4x-4
=x(x2+2x+2)-2(x2+2x+2)
=(x-2)(x2+2x+2)
a, \(x^5+x^4+1\)
\(\Leftrightarrow x^5+x^4-x^2+\frac{1}{4}-\frac{1}{4}+x^2\)
\(\Leftrightarrow x^5+\left(x^2-\frac{1}{2}\right)^2-\frac{1}{4}+x^2\)
\(\Leftrightarrow x^2\left(x^3+1\right)+\left(x^2-\frac{1}{2}\right)^2-\frac{1}{4}\)
\(\Leftrightarrow x^2\left(x+1\right)\left(x^2-x+1\right)+\left(x^2-\frac{1}{2}+\frac{1}{2}\right)\left(x^2-\frac{1}{2}-\frac{1}{2}\right)\)
ta có :x^5 +x^4 +1=x^5-x^2 +x^4 -x +x^2 +x +1=x^2(x^3-1) +x(x^3 -1)+x^2 +x +1=x^2(x-1)(x^2+x+1)+x(x-1)(x^2 +x+1) +x^2 +x +1=(x^2 +x +1)(x^3 -x^2 +x^2 -x +1)=(x^2 +x+1)(x^3-x+1)
#)Giải :
\(x^3-2x-4\)
\(=x^3+2x^2-2x^2+2x-4x-4\)
\(=x^3+2x^2+2x-2x^2-4x-4\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^4+2x^3+5x^2+4x-12\)
\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)
\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
Câu 1.
Đoán được nghiệm là 2.Ta giải như sau:
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(=x^4+2x^2+1-\left(\sqrt{2}x\right)^2\)
\(=\left(x^2+1\right)^2-\left(\sqrt{2}x\right)^2\)
\(=\left(x^2+1-\sqrt{2}x\right)\left(x^2+1+\sqrt{2}x\right)\)
\(x^4+1\)
\(=x^4+2x^2+1-2x^2\)
\(=\left(x^2+1\right)^2-\left(x\sqrt{2}\right)^2\)
\(=\left(x^2-x\sqrt{2}+1\right)\left(x^2+x\sqrt{2}+1\right)\)
\(x^8+x^4+1\)
\(=x^4.\left(x^4+1\right)+\left(x^4+1\right)-x^4\)
\(=\left(x^4+1\right).\left(x^4+1\right)-\left(x^2\right)^2\)
\(=\left(x^4+1\right)^2-\left(x^2\right)^2\)
\(=\left(x^4+1-x^2\right).\left(x^4+1+x^2\right)\)
\(x^4+16\)
\(=x^4+4x^2+16-4x^2\)
\(=\left(x^2+4\right)^2-4x^2\)
\(=\left(x^2-2x+4\right)\left(x^2+2x+4\right)\)
\(x^4+16\)
\(=x^4+4x^2+16-4x^2\)
\(=\left(x^2+4\right)^2-4x^2\)
\(=\left(x^2-2x+4\right)\left(x^2+2x+4\right)\)