Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích đa thức thành nhân tử
(x+3)(x−6)+x2−9
Tk nha !
\(\left(x+3\right)\left(x-6\right)+x^2-9\)
\(=x^2-3x-18+x^2-9\)
\(=2x^2-3x-27\)
\(=\left(2x^2+6x\right)-\left(9x+27\right)\)
\(=\left(x+3\right)\left(2x-9\right)\)
Rút gọn thôi chứ phân tích sao được ._.
( x - 3 )2 - ( 4x + 5 )2 - 9( x + 1 )2 - 6( x - 3 )( x + 1 )
= x2 - 6x + 9 - ( 16x2 + 40x + 25 ) - 9( x2 + 2x + 1 ) - 6( x2 - 2x - 3 )
= x2 - 6x + 9 - 16x2 - 40x - 25 - 9x2 - 18x - 9 - 6x2 + 12x + 18
= -30x2 - 52x - 7
Sửa đề lại 1 chút là phân tích được mà bn Quỳnh:))
Ta có: \(\left(x-3\right)^2-\left(4x+5\right)^2+9\left(x+1\right)^2-6\left(x-3\right)\left(x+1\right)\)
\(=\left[\left(x-3\right)^2-6\left(x-3\right)\left(x+1\right)+9\left(x+1\right)^2\right]-\left(4x+5\right)^2\)
\(=\left(x-3-9x-9\right)^2-\left(4x+5\right)^2\)
\(=\left(8x+12\right)^2-\left(4x+5\right)^2\)
\(=\left(4x+7\right)\left(12x+17\right)\)
= 9.[(x^4+2x^2+1)-x^2] - (x^2+x+1)^2
= 9.[(x^2+1)^2-x^2] - (x^2+x+1)^2
= 9.(x^2+x+1).(x^2-x+1)-(x^2+x+1)^2
= (x^2+x+1).(9x^2-9x+9-x^2-x-1)
= (x^2+x+1).(8x^2-10x+8)
= 2.(x^2+x+1).(4x^2--5x+4)
Tk mk nha nếu đúng
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+8x+2x+16\right)\left(x^2+6x+4x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10+16+8\right)+16\)
\(=\left(x^2+10x+16\right)^2+2.\left(x^2+10x+16\right).4+4^2\)
\(=\left(x^2+10x+16+4\right)^2\)
\(=\left(x^2+10+20\right)^2\)
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+16\)
\(=\left(x^2+8x+2x+16\right)
\left(x^2+6x+4x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\left(1\right)\)
\(\text{Đặt }x^2+10x+\frac{16+24}{2}=t\)
\(\text{hay }x^2+10x+20=t\)
\(\left(1\right)\Rightarrow\left(t-4\right)\left(t+4\right)+16\)
\(=t^2-4^2+16\)
\(=t^2-16+16\)
\(=t^2\)
\(=\left(x^2+10x+20\right)^2\)
\(\left(x-2\right)\left(x-4\right)\left(x-6\right)\left(x-8\right)+16\)
\(=\left[\left(x-2\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x-6\right)\right]+16\)
\(=\left(x^2-10x+16\right)\left(x^2-10x+24\right)+16\)(1)
Đặt \(x^2-10x+20=t\)thay vào (1) ta được :
\(\left(t-4\right)\left(t+4\right)+16\)
\(=t^2-16+16\)
\(=t^2\)Thay \(t=x^2-10x+20\)ta được :
\(\left(x^2-10x+20\right)^2\)
\(=\left(x^2-2.5.x+25-25+20\right)^2\)
\(=\left[\left(x-5\right)^2-5\right]^2\)
\(=\left(x-5-\sqrt{5}\right)^2\left(x-5+\sqrt{5}\right)^2\)
(x^2 - 2x)(x^2 - 2x - 1) - 6
đặt x^2 - 2x = a
= a(a - 1) - 6
= a^2 - a - 6
= a^2 - 3a + 2a - 6
= a(a - 3) + 2(a - 3)
= (a + 2)(a - 3)
= (x^2 - 2x + 2)(x^2 - 2x - 3)
= (x - 3)(x + 1)(x^2 - 2x + 2)
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+18\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)-16\)
\(=\left(x^2+10x+20\right)^2-16+16=\left(x^2+10x+20\right)^2\)
Chúc bạn học tốt.
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(\Rightarrow\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+6\right)\left(x+8\right)\right]+16\)
\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(\Rightarrow\left(x^2+10x+16\right)\left[\left(x^2+10x+16\right)+8\right]+16\)
\(\Rightarrow\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+4^2\)
\(\Rightarrow\left(x^2+10x+20\right)^2\)
\(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
Đặt \(x^2+3x+1=a,\)ta được:
\(a\left(a+1\right)-6\)
\(=a^2+a-6=\left(a^2+3a\right)-\left(2a+6\right)\)
\(=a\left(a+3\right)-2\left(a+3\right)=\left(a+3\right)\left(a-2\right)\)
Thay \(a=x^2+3x+1,\)ta được:
\(\left(x^2+3x+1+3\right)\left(x^2+3x+1-2\right)\)\(=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)
a)
\(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
b)
Đặt \(x^2+3x+1=t\), ta có:
\(t\left(t+1\right)-6\)
\(=t^2+t-6\)
\(=t^2+3x-2x-6\)
\(=t\left(t+3\right)-2\left(t+3\right)\)
\(=\left(t+3\right)\left(t-2\right)\)
a, \(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
b, \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
\(=\left(x^2+3x+1,5\right)^2-0,5^2-6\)
\(=\left(x^2+3x+1,5\right)^2-2,5^2\)
\(=\left(x^2+3x+1,5-2,5\right)\left(x^2+3x+1,5+2,5\right)\)
\(=\left(x^2+3x-1\right)\left(x^1+3x+1\right)\)
x2(x2-6)-x2+9
<=>(x4-6x2+9)-x2
<=>(x2-3)2-x2
<=>(x2-3-x)(x2-3+x)
e cảm ơn ạ